Moving beyond waste management towards a circular economy

Valuing Infrastructure Conference Leeds, 26 April 2017 Anne Velenturf and Phil Purnell

W: <u>www.rrfw.org.uk</u>

M: <u>A.Velenturf@leeds.ac.uk</u>

@RRfW6

Resource Recovery from Waste

Resource Recovery from Waste

A circular economy in which waste and resource management contributes to a resilient environment and human well-being.

Circulai

Societal

Uptake

RESOURCE

Ecosystem

Multi-

Biogeo

chemical Processes

Research

can we live within the doughnut? Oxfam International.

In today's linear economy, we are missing opportunities to create new products and clean energy from consumed materials.

Moving beyond waste management towards a circular economy

http://www.specchemonline.com/feature darticles/squaring-the-circle

https://s-media-cacheak0.pinimg.com/originals/bd/db/27/bddb27a160c0843f36783042aa4c4329.jpg

Economic

Technical

· Eco-efficiency analysis

extended IOA (EE-IOA)

(CBA) Input-output analysis (IOA)

Cost-benefit analysis

Life cycle costing (LCC)

Technical performance

· Green chemistry metrics

measures (TPM) Manufacturing/Engineering

metrics

Environmentally

(Pt) Critical (EU) Oxide ores Non-critical (EU) 00 PGM 0 1 0 6 6 0 ۲ 000 Sulphide ores Carrier metals Significant co-products By-products http://iopscience.iop.org/0022-3727/50/12/123002/downloadFigure/figure/daa5b64f05

Complex Value Optimisation for Resource Recovery

...further details in poster session!

Waste management and industrial strategy

How are we going to secure resource access for future, low carbon industries?

B2B resource efficiency

METEOR Resource **INSPIRE**

extraction and processing

R3AW ALKALINE REMEDIATION

B3

 Mining legacy landfills

AVAnD

• Turning wastes into products

Further info

www.rrfw.org.uk

http://ostseis.anl.gov/images/photos/TS-Open pit Suncor-600.jpg; https://britishmineralogy.com/wordpress/wp-content/uploads/2012/01/02-Parys-Mountain-Great-Opencast-viewed-from-the-south-DSC 0354-1280x768.jpg; http://s498622449.initial-website.co.uk/s/cc_images/cache_22271814.jpg

EfW ≠ CE

"...an ambition to move towards a 'circular economy' where material resources are valued and kept in circulation" (IPA 2016, p64)

Infrastructure and Projects Authority Reporting to HM Treasury and Cabinet Office

National Infrastructure Delivery Plan 2016–2021

Size and potential circular economy

- 1. In 2014 0.5% GVA; Potential £29 billion GDP (Veolia 2015)
- 2. Excl. reuse, repair, remanufacturing; Reuse sector Scotland estimated £244M
- 3. In 2013 employed 140.000 people; 50% up from 1993
- 4. New jobs in circular economy (WRAP and Green Alliance 2015)

- Waste collection
- Treatment and disposal
- Material recovery

Net job creation in circular economy activity to

2030 at current growth rate, as a percentage of

labour force

National and local capacity

Number of sites (total 6305)

Mt managed (total 187 Mt)

Data and resource quality

- 1. Capacity requirement estimates complicated by lack of data; especially for commercial, industrial and construction wastes.
- 2. Data collection within waste treatment supply chain not standardised; changes to definition of waste.
- 3. Standardised data required on waste resource quality, quantity and location.
- 4. Data deficiencies complicate coherent policy making; policy uncertainty is barrier to investment.
- 5. Between £5 and £25 billion investment needed for close to circular economy.

Office for Resource Stewardship

- 1. Enforce resource efficiency; incl. waste prevention and promoting reuse and recycling
- 2. Standardised data collection
- 3. Extended producer and consumer responsibility
- 4. Integrate national and local level governance
- 5. Targets based on recovery of value and function, instead of landfill diversion
- 6. Reduce reliance on resource imports
- 7. High- and low-skilled jobs creation
- 8. Infrastructure investment
- 9. Research and innovation of exportable recovery technologies
- 10. Contribute to Sustainable Development Goals

Conclusion

- 1. Investment needed for material recovery infrastructure
- 2. Data deficiencies hold back investment
- 3. Need to establish an Office for Resource Stewardship

Office for Resource Stewardship

Contact @RRfW6 in R⁶ Resource Recovery from Waste Website <u>rrfw.org.uk</u> Email <u>A.Velenturf@leeds.ac.uk</u>

