An excursion into Model Theory and its applications; Automorphism groups of countable first order structures

Zaniar Ghadernezhad

Imperial College London

LMS online lecture series - Fall 2020

Table of contents

1 Automorphism groups of first order structure

- Topology on automorphism groups
- Ryll-Nardzewski Theorem
- Fraïssé construction

2 Applications

- Small index property
- Simple automorphism groups
- KTP correspondence and structural Ramsey theory

Lecture 1 Automorphism groups of first order structure

Notation and some group theory

- Assume G is a group acting (from left $G \times \Omega \to \Omega$) on Ω . For $a \in \Omega$ denote $Ga := \{ga : g \in G\}$ for the orbit of a under G. Orbits are equivalence classes.
- *G* is called transistive if it has only one orbit.
- If A ⊂ Ω denote G_A for {g ∈ G : ga = a, ∀a ∈ A}, the pointwise stabiliser of A, and G_{A} for {g ∈ G : gA = A} the setwise stabilisier.
- For $n \in \mathbb{N}$ there is a natural action of G on Ω^n via diagonal action $g\bar{a} = (ga_1, \cdots, ga_n).$
- A topological group G is a group with a topology on G such that the group's operation and the inverse function are continuous.
- Every group topology on G is determined by its neighbourhood at identity 1_G (follows from the fact that for every h the map $g \mapsto gh$ is a homeomorphism).

Some topology

- Let Ω be an infinite set and consider discrete topology on Ω . Consider the product topology on Ω^{Ω} i.e. the coarsest topology for which all the canonical projections are continuous. This is referred to τ_{tp} as the topology of pointwise convergence.
- Sets $O_f =: \{f' \in \Omega^{\Omega} : f' \text{ extends } f\}$, where finite map $f : \Omega \to \Omega$ form a base for the topology τ_{pt} .
- Let $Sym(\Omega)$ be the set of all permutations of Ω .
- Sym(Ω) is a topological group with the induced subspace topology on the product topology on Ω^Ω (Exercise).
- Basic open sets are closed hence $Sym(\Omega)$ is totally disconnected.
- When Ω is countable $Sym(\Omega)$ is separable (i.e. there is countable dense subset).

Automorphism groups

- Suppose M is a first order L-structure (with the underlying set Ω). Let Aut(M) be the automorphism group of M.
- Consider Aut(M) as a group acting on M (and M^n).
- It is clear that Aut(M) is a subgroup of $Sym(\Omega)$.

Fact 1.1. Let G be a subgroup of $Sym(\Omega)$. Then G is closed if and only if G is the automorphism group of some first order structure.

Proof. \Leftarrow . Take an elements $g \in Sym(\Omega) \setminus Aut(M)$. Since it is not an automatism there is a finite A such that $g \upharpoonright_A$ is not an isomorphism. Then $O_f \cap Aut(M) = \emptyset$. \rightarrow For each orbit on Ω^n consider a predicate which the realisation is exactly all the elements of that orbit. Let L be the set of all those predicates. Show that G is the automorphism group of that structure in L. (Exercise)

The structure obtained above over Ω is called the canonical structure for G on Ω .

Automorphism groups

- When M is a countable structure we have Aut(M) is a Polish group i.e. separable and completely metrizable.
- Fix an enumeration on Ω and define $d(g, h) = \frac{1}{2^i}$ where *i* is the smallest index with $g(i) \neq h(i)$ and $g^{-1}(i) \neq h^{-1}(i)$.
- Every open subgroup is has countable index.

Fact 1.2. Suppose G is a closed subgroup of $Sym(\Omega)$. Then either identity is isolated or $|G| = 2^{\aleph_0}$.

Proof. By Cantor's argument every non-empty perfect complete space contains a Cantor set.

Different topologies on $Sym(\Omega)$

- When *M* is uncountable (Ω uncountable) then a more natural topology is the topology with basis around identity *G_A* where |*A*| < |Ω|.</p>
- Is this the only group topology on $Sym(\Omega)$.
- Discrete topology.
- Markov topology: Given a group G the Markov topology τ_M , is the intersection of all Hausdorff group topologies on G (not necessarily a group topology).
- Zariski topology: Given a group *G* the Zariski topology τ_Z , is generated by the subbase consisting of the sets $\{x \in G \mid x^{\epsilon_1}g_1x^{\epsilon_2}g_2\cdots x^{\epsilon_n}g_n \neq 1\}$, where $n \in \mathbb{N}$, $g_1, \ldots, g_n \in G$, and $\epsilon_1, \ldots, \epsilon_n \in \{-1, 1\}$.

Theorem 1.3 (Guran 1967, Banakh , Guran, Protasov 2012). When Ω is countable, $\tau_Z = \tau_M = \tau_{pt}$ on Sym(Ω).

\aleph_0 -categorical structures

If T is \aleph_0 -categorical then all its countable models are saturated.

Theorem 1.4 (Engeler, Ryll-Nardzewski, Svenonius). Let M be a countable first order structure and T = Th(M). TFAE

- *M* is an ℵ₀-categorical structure;
- Aut(M) has finitely many orbits on Mⁿ for all n (called Oligomorphic);
- $S_n(T)$ for all $n \in \mathbb{N}$ is finite;
- All the types in $S_n(T)$ are isolated.

Corollary 1.5. Automorphism group of countable \aleph_0 -categorical has cardinality 2^{\aleph_0} .

Proof. Exercise. Use the theorem above and Fact 1.2.

Fraïssé construction

Definition 1.6. A countable structure in a relational language is called homogeneous if every isomorphism between finite substructures extends to an automorphism.

Fact 1.7. If M is homogeneous over a finite relational language then M is \aleph_0 -categorical.

Definition 1.8. An *Age* is the class of finite *L*-structures, closed under isomorphism.

Proof. We want to show if $N \equiv M$ and N countable then it is isomorphic to M. We use Back and Forth argument (Exercise). Hint: Key point any finite substructure A of M, there is a sentence expressing that A embeds in M, so Age(M) = Age(N). Definition 1.9. Suppose *L* is relational language (at most countable) and *C* a countable class of finite *L*-structures is a Fraïssé class if it is closed under *substructure* (HP) and *isomorphism* and:

- **1** (JEP) If $A, B \in C$ then there is $C \in C$ such that $A, B \subseteq C$;
- 2 (AP) If $A, B, C \in C$ and $A \subseteq B, C$, then there is $D \in C$ such that $B \subseteq D$ and $C \subseteq D$.

We assume $\emptyset \in \mathcal{C}$ (JEP is implied by AP).

Theorem 1.10. (Fraïssé 1953) Suppose C is a Fraïssé class. Then, there exists a unique, up to isomorphism, countable structure M that is homogeneous and C = Age(M).

• *M* is called the Fraissé limit of C, denoted by Flim(C).

Fraïssé limits

Examples 1.11.

- Class of all finite linearly ordered sets; Fraïssé limit is (Q, <).
- Class of all finite graphs; Fraïssé limit is called the Random graph. Class of all finite K_n-free graphs; Random K_n-free graph.
- Class of all finite metric spaces with rational distances: Let $L = \{R_q : q \in \mathbb{Q}^{\geq 0}\}$ where R_q is binary. A metric space (X, d) with rational distance is an L-structure $R_q(a, b)$ if and only if $d(a, b) \leq q$ for $q \in Q^{\geq 0}$. For AP given a subspace A of $B_1 \cap B_2$, arrange $B_1 \cup B_2$ (disjoint over A) such that $d(x_1, x_2) = \min_{a \in A}(d(x_1, a) + d(x_2, a))$ for $x_i \in B_i$. Fraïssé limit is called rational Urysohn space which the completion is the Urysohn universal space (metric space that contains all separable metric spaces).

Fact 1.12. A countable structure M with Age(M) = C is homogeneous if and only if $A \subseteq M$ and $A \subseteq B \in C$, then there is an embedding $g : B \longrightarrow M$ with $g \upharpoonright_A = 1_A$ and $gB \subseteq M$ (called richness).

Proof. Exercise.

Proof

The uniqueness follows by a back-and-forth argument. For existence, we aim to build a rich structure M. Essentially, there are countably many such triples (f, A, B) to consider. We build M as a union of a chain $M_0 \subseteq M_1 \subseteq M_2 \ldots$ of members of C When doing this we ensure that:

1 If $A \in C$ then $A \subseteq M_i$ for some *i*;

2 If (f, A, B) is triple and $A \subseteq M_i$ there is some j > i such that $B \to M_j$ and To fulfil (1) we use JEP.

For (2): suppose the construction has reached stage k > i. At the next stage we can take M_{k+1} which is the the amalgamation of $A \to M_k$ (inclusion), (f, A, B) i.e. sing AP we obtain $h: M_k \to M_{k+1}$ (which can be taken as inclusion), and $g: B \to M_{k+1}$ with gfa = ha = a for all $a \in A$

Lecture 2 Applications

Various questions on automorphism groups

- Small index property and reconstruction problem.
- Simple groups
- Extremely amenable groups

Small index property

Definition 2.1. We say a countable structure M it has the small index property (SIP) if whenever H is a subgroup of Aut(M) of index less $< 2^{\aleph_0}$, then H is open.

- The SIP implies that we can recover the topology on G from its group-theoretic structure: the open subgroups are precisely the subgroups of small index and the cosets of these form a base for the topology.
- SIP implies group isomorphism is a homeomorphism. When ω-categorical we can recover the structure up to bi-interpretability (Ahlbrandt and Ziegler, Rubin).

Examples 2.2.

- (Dixon, Neumann, Thomas) Countable infinite set Ω .
- (Truss)(ℚ, <)
- (Evans) General linear groups and classical groups over countable fields.
- (Hodges, Hodkinson, Lascar, Shelah) Random graph and \aleph_0 -categorical ω -stable structures.
- The usual technique to show M has SIP is to show Aut(M) has ample homogenous automorphisms. In order to show that one uses a combinatorial condition called EPPA.
- (Lascar, Shelah) When *M* is uncountable and saturated then it has SIP.

Simple groups

• (Higman 1954) The non-trivial, proper normal subgroups of $G = Aut(\mathbb{Q}; \leq)$ are,

$$\begin{split} \mathcal{L}(\mathbb{Q}) &= \{g \in G : \exists q \in \mathbb{Q}, g \upharpoonright_{(-\infty,q)} = 1_G\}, \\ \mathcal{R}(\mathbb{Q}) &= \{g \in G : \exists q \in \mathbb{Q}, g \upharpoonright_{(\mathfrak{s},\infty)} = 1_G\}, \end{split}$$

and $B(\mathbb{Q}) = L(\mathbb{Q}) \cap R(\mathbb{Q}).$

- (Truss 1985) The automorphism group of countable Random graph is simple.
- (Droste, Holland, Macpherson 1989) The automorphism group of a countable, homogeneous semilinear order has many normal subgroups (2^{2[№]0} many).
- (Lascar 1992) Let M be a countable saturated model that M = acl(D) where D is a strongly minimal set. The strong automorphism group M modulo the bounded automorphism groups of M is simple.

Simple groups

Corollary 2.3 (Lascar). If F and K are algebraically closed filed of characteristic zero such that $K \subseteq F$ and the transcendental degree of F over K is strictly bigger than \aleph_0 , then the automorphism group of F that fixes K point-wise is a simple group. Especially, $Aut_{\mathbb{Q}}(\mathbb{C})$ is a simple group.

- (Macpherson, Tent 2011) The automorphism group of a free-homogeneous structures, which is transitive and not equal to the full-symmetric group is a simple group.
- (Tent, Ziegler 2012) Suppose M is a countable structure with a *local* stationary independence relation and assume $g \in G = Aut(M)$ move maximally. If G contains a dense conjugacy class, then any element of G is the product of eight conjugates of g.
- (Tent, Ziegler 2012) The isometry group of of the Urysohn space is simple modulo the normal subgroup of bounded isometries.

Stationary independence

Consider [] to be ternary relation between finite subsets $A, B, C \subseteq M$; written $A \bigcup_{B} C$ and pronounced 'A is independent from C over B'. Definition 2.4. We say *i* is a stationary independence if the following holds Invariance: If $g \in G$ and $A \bigcup_B C$ then $gA \bigcup_{\sigma B} gC$. • Monotonicity: If $A \bigcup_{P} C \cup D$, then $A \bigcup_{P} C$ and $A \bigcup_{P \cup C} D$. Transitivity: If $A \bigcup_{B} C$ and $A \bigcup_{B \cup C} D$, then $A \bigcup_{B} C \cup D$. Symmetry: If $A \bigcup_{P} C$ then $C \bigcup_{P} A$. • Existence: There exists $g \in G_B$ such that $g(A) \bigcup_{B} C$. Stationarity: Suppose A_1 , A_2 , B, C are finite structures with $B \subseteq A_i$, $A_1 \equiv_B A_2$ and $A_i \bigcup_B C$ then $A_1 \equiv_{BC} A_2$.

If it is only defined for non-empty base then it is called local.

Examples 2.5.

Pure set and Random graph.

Definition 2.6.

- Let \bigcup be a (local) independence relation on M and let $g \in G$. We say that g moves maximally if, for all (non-empty) finite sets A and all types p over X, there is a realisation a of p such that $a \bigcup_{A;gA} ga$ (i.e. $a \bigcup_A gA \cup \{ga\}$ and $a \cup A \bigcup_{gA} ga$).
- G contains a dense conjugacy class of for every finite tuples $\bar{x}, \bar{y}, \bar{a}, \bar{b}$ with $tp(\bar{x}) = tp(\bar{y})$ and $tp(\bar{a}) = tp(\bar{b})$ there are tuples $\bar{x}'\bar{y}'$ such that $tp(\bar{x}', \bar{y}') = tp(\bar{x}, \bar{y})$ and $tp(\bar{x}', \bar{a}) = tp(\bar{y}', \bar{b})$.

Theorem 2.7 (Tent, Ziegler 2012). Suppose M is a countable structure with a local stationary independence relation and assume $g \in G = Aut(M)$ move maximally. If G contains a dense conjugacy class, then any element of G is the product of eight conjugates of g.

Idea of the proof

- Consider $\phi: G^4 \rightarrow G$ be $\phi(h_1, \ldots, h_4) := g^{h_1} g^{h_2} g^{h_3} g^{h_4}$.
- Show that $\phi(G^4)$ has is not meager.
- Since G contains a dense conjugacy class, using some Baire category argument we can show that $\phi(G^4)$ is not co-meager.
- g^{-1} moves maximally. Consider $\phi': G^4 \to G$ be $\phi(h_1, \ldots, h_4) := g^{-h_1}g^{-h_2}g^{-h_3}g^{-h_4}$.
- Given f we get $\phi(G^4)f \cap \phi'(G^4) \neq \emptyset$.

Definition 2.8.

- Let *G* be a topological group. A continuous action of *G* on a compact Hausdorff space is called a *G*-flow.
- Group G is called extremely amenable if every G-flow has a fix point.
- Group G is amenable if every G-flow supports a G-invariant Borel probability measure.

Examples 2.9.

- If G is a subgroup of Sym(Ω) then every closed G-invariant subset of {0,1}^{Ω²} is a G-flow.
- $LO(\Omega) := \{ R \in \{0,1\}^{\Omega^2} : R \text{ is a linear order on } \Omega \}.$

Fact 2.10. If G is an extremely amenable then there is a G-invariant linear order on Ω .

Ramsey property

Theorem 2.11. (Kechris, Pestov, Todorcevic 2005) Let $G \leq Sym(\Omega)$ be a closed subgroup. Then the following are equivalent:

- **1** *G* is extremely amenable.
- 2 G = Aut (M), where M is the Fraïssé limit of a ordered Fraïssé class with the Ramsey property.

Examples 2.12.

- Class of all finite linearly ordered sets.
- (Nešetřil and Rödl) Class of all finite ordered graphs.
- (Nešetřil) Class of all finite ordered metric spaces with rational distances.
- (Dual Ramsey theorem of Graham-Rothschild) The class of all finite Boolean algebras $(B; \lor, \land, -^c, 0, 1)$ has the Ramsey property.

Ramsey property

• Suppose C is a class of *L*-structures.

• Let $A, B \in C$ and $A \subseteq B$. Let $\begin{pmatrix} B \\ A \end{pmatrix}$ be the set of all embeddings of A in B.

Write
$$C \to (B)_k^A$$
 when for every $f : \begin{pmatrix} C \\ A \end{pmatrix} \to \{0, 1, \dots, k-1\}$ there is $B' \in \begin{pmatrix} C \\ B \end{pmatrix}$ such that $\{f(A') : A' \in \begin{pmatrix} B' \\ A \end{pmatrix}\}$ is monochromatic.

Definition 2.13. Suppose C is a class of *L*-structures. C is a Ramsey class if for every $A, B \in C$ and $k \in \mathbb{N}$ with $A \subseteq B$ there is $C \in C$ such that $C \to (B)_k^A$.

Theorem 2.14 (Classical infinite Ramsey Theorem). Let B be a countably infinite set, and let m, r be finite integers. For every $h : {B \choose m} \rightarrow \{0, \ldots, r-1\}$ there exists an infinite $P \subseteq B$ such that is monochromatic on all m-element subsets of P.

Corollary 2.15 (Finite Ramsey Theorem). For every $k, m, n \in \mathbb{N}$ there is I such that $I \to (k)_m^n$.

Proof. Suppose not. Then we have bad coloring for an n, m. Find a bad coloring on an infinite set using König's Lemma (infinite finite branching tree an infinite path).

Proposition 2.16. Let C be an amalgamation class, and let M = Flim(C). Then C has the Ramsey property if and only if $M \to (B)_k^A$ for all $k \ge 2$ and for all $A, B \in C$.

Main question

Question

Let M be a homogeneous structure with over a finite relational language. Then there is a homogeneous expansion M^* of M with finite relational language whose age has the Ramsey property.

Theorem 2.17 (Evans, Hubička, Nešetřil). There exists a closed oligomorphic permutation group without a closed oligomorphic extremely amenable subgroup. Equivalently, there exists an \aleph_0 -categorical structure without an ordered \aleph_0 -categorical Ramsey expansion.

Theorem 2.18. Let C be a class of ordered finite L-structures that is closed under substructures, isomorphism, and has JEP. If C is Ramsey, then it has AP.

Proof. Let A, B_1, B_2 be elements of C such that $A \subseteq B_i$. Since C has JEP, there exists a structure $C \in C$ with embeddings $e_i : B_i \to C$. If e_1, e_2 have the same restriction to A, we are done, so assume otherwise. Let $D \in C$ be such that $D \to (C)_2^A$. Define a coloring $h : \binom{C}{A} \to \{0, 1\}$ as follows: for $A' \in \binom{C}{A}$ define h(A') = 1 if there exists $C' \in \binom{D}{C}$ and let gC = C' such that $ge_1A = A'$; otherwise define h(A') = 0. By the Ramsey property, there is $C_0 \in \binom{D}{C}$ that is monochromatic. Let $tC = C_0$. Note that according to the coloring, h is constant 1 for elements $\binom{C_0}{A}$. Consider te_2A then $h(te_2A) = 1$. We are done.

Idea of the proof

Assume G is extremely amenable then show:

(2) For every open subgroup H of G and if $c : G/H \to \{0, ..., k-1\}$ and $A \subseteq G/H$ is finite, there is $g \in G$ and i < k such that c(ga) = i for all $a \in A$. Then we show (2) is equivalent to (3)

(3) *G* preserves a linear ordering on Ω and *G* has the Ramsey property. Consider the *G*-flow $\{0, \dots, k-1\}^{G/H}$. Let *Y* be the closure in this of the *G*-orbit $\{gc : g \in G\}$. This is a *G*-flow, so must contain a *G*-fixed point. So it contains a constant function $f_i(z) = i$ (for some i < k). In other words, f_i is in the closure of $\{gc : g \in G\}$. This translates into the condition in (2).

Suppose not and there are $A \subseteq B$ such that $C \nleftrightarrow (B)_2^A$ for all $C \in C$. Pick $C_0 \in {M \choose C}$. Then, for every finite $C_0 \subseteq E \subseteq M$ there exists a 2-coloring $c_E : {E \choose A} \longrightarrow \{0,1\}$ that is not constant on any copy of B. Take \mathcal{I} be the set of all finite subsets of M, as an index set, and for $D \in \mathcal{I}$, let $\mathcal{X}_D := \{F \in \mathcal{I} : D \subseteq F\}$. One can show $\mathcal{E} := \{\mathcal{X}_A : A \in \mathcal{I}\}$ has FIP. Hence, there exists an ultra-filter \mathcal{U} on the index set \mathcal{I} such that for every finite $D \in \mathcal{I}$ the set $\mathcal{X}_D \in \mathcal{U}$. Define a 2-coloring $c : {M \choose A} \longrightarrow \{0,1\}$ as follows: for $A' \in {M \choose A}$

$$c(A') := i \Leftrightarrow \{E \in \mathcal{I} : A'B_0 \subseteq E \text{ and } c_E(A') = i\} \in \mathcal{U}.$$

Using (2) show that there is a $B' \in \binom{M}{B}$ that is monochromatic; contradiction