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Review

L a countable language. Assume T is a complete theory.

A type is a complete and consistent set of L-formulas (n-type in n-variables).

The notion of types extends naturally to types over sets (e.g. over A where
A ⊆ M and M |= T ).

A structure M is κ-saturated if for every A ⊆ M of size |A| < κ, every type
over A is realised in M.

Given M and κ infinite, there is a κ-saturated M � � M.

A type p(x̄) is isolated if it is isolated by a formula ψ(x̄) if T ∪ {ψ(x̄)} is
consistent and

T � ∀x̄(ψ(x̄) → φ(x̄)).

By Omitting Type Theorem if p(x̄) is not isolated there is countable model of
T that omits p(x̄).
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ℵ0-categoricity

Assume L is countable language.

Proposition 6.1. A countable complete theory with infinite models is
ℵ0-categorical if and only if all its countable models are ℵ0-saturated.

Proof. =⇒ Suppose T has a countable model M that is not saturated. That
means there is a non-isolated type over a finite set in M. Find an elementary
extension of M of countable size that realises the type. This contradicts
ℵ0-categoricity.
⇐= Back and forth.

Corollary 6.2. T is ℵ0-categorical if and only if for every all types are isolated.

Exercise 6.3. If M is an L-structure and ā ∈ Mn. Then Th(M) is ℵ0-categorical if
and only if Th(M, ā) is ℵ0-categorical.

Corollary 6.4. If T is ℵ0-categorical for every all types over finite sets are isolated.
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Space of types
Definition 6.5. Let T be a theory and n ∈ N. Denote Sn(T ) for the set of all
n-types of T . When A ⊆ M |= T , M infinite let Sn(M;A) denote the set of all
n-types over A.

Proposition 6.6. The set Sn(T ) endow a topology: For any L-formula φ(x̄) let

[φ] := {p ∈ Sn(T ) : φ(x̄) ∈ p}.

The collection of [φ] form a basis for a topology on Sn(T ).

[⊥] = ∅ and [�] = Sn(T );

[φ] ∩ [ψ] = [φ ∧ ψ];

[φ] ∪ [ψ] = [φ ∨ ψ].

Note that Sn(T )\[φ] = [¬φ] i.e. basic open sets are closed (called clopen).

Formula ψ isolates p if and only if [ψ] = {p}.
S0(T ) is the set of all consistent completions of T .The space S0(T ) is
homeomorphic to the stone space on B0(T ) where B0(T ) is the equivalence
class ≡T of L-sentences (φ ≡T ψ iff T � φ ↔ ψ).
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Space of Types
Proposition 6.7. Sn(T ) is a compact, totally disconnected Hausdorff space.

Proof. Totally disconnected follows from the fact above.
If p1, p2 are two different types then there is φ such that p1 � φ but p2 � ¬φ.
Then [φ] and [¬φ] are open sets which separate p1 and p2.
Suppose {[φi ] : i ∈ I} is a family of closed subsets with FIP. That means
φi1 ∧ . . . ∧ φin is consistent for all n hence {φi (x̄) : i ∈ I} is consistent. Take any
complete extension p of {φi : i ∈ I}. Then �

[φi ] �= ∅.
Corollary 6.8. Assume T is a complete theory with infinite models in a countable
language L. Then T is ℵ0-categorical if and only if Sn(M;A) is finite for all finite
A and all n ∈ N.

Proof. By the previous argument every type in Sn(M;A) is isolated. For every
type p ∈ Sn(M;A) take a formula φp that isolates it. Then Sn(M;A) =

�
p[φp]

(this is an open covering). By compactness of Sn(M;A) we have a finite
covering. Hence there are φp1 , . . . ,φpn such that

�
i [φpi ] = Sn(M;A).

Exercise 6.9. (Ryll-Nardzewski Theorem) Assume T is countable complete theory
with infinite models. T is ℵ0-categorical if and only if there are only finitely many
formulas φ(x̄) up to equivalence modulo T .
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Counting types
We fully characterised ℵ0-categoricity in terms of |Sn(T )| (or |Sn(M;A)| for
finite sets A).
What are the possibilities of |Sn(T )|? Notice that |Sn(T )| ≤ 2ℵ0 and we have
at most countable isolated types.
If |Sn(T )| > ℵ0 then we have uncountable many countable models of T .

Theorem 6.10. Assume T is a complete theory with infinite models in a
countable language L. If |Sn(T )| > ℵ0 then |Sn(T )| = 2ℵ0 . Actually,
|Sn(T )| ≤ ℵ0 if and only if isolated types are dense in Sn(T ).

Proof. Since |Sn(T )| > ℵ0 then there is φ such that |[φ]| > ℵ0.
Claim: For every such φ there is ψ such that |[φ ∧ ¬ψ]| > ℵ0 and |[φ ∧ ψ]| > ℵ0.
If not show that p := {ψ : |[ψ ∧ ψ]| > ℵ0} is consistent (i.e. finitely consistent).
This implies that Sn(T ) =

�
ψ/∈p[φ∧ψ]∪ {p}; contradiction (with |Sn(T )| > ℵ0).

Now using the proof build the following tree:
Argue each branch is leading us to a type
Different branches give us different types
Number of branches is 2ℵ0 .
It only remains to show if isolated types are not dense then |Sn(T )| > ℵ0. Try to
build a tree by taking basic open sets that do not contain isolated types.
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Counting types
Definition 6.11. A theory T is called small if |Sn(T )| ≤ ℵ0 for all n ∈ N.

Lemma 6.12. A complete countable theory is small if and only if it has countable
saturated model.

Proof. Repeat a similar argument to Theorem but with some changes. Start with
a countable model M0. In each step n + 1 choose Mn+1 to be a countable model
of Diagel(Mn) ∪

�
p p(xp) for all 1-types p over all finite sets A ⊆ Mn. The

desired structure is the union of the elementary chain i.e. M =
�

n∈ω Mn.

Theorem 6.13 (Vaught). A countable complete theory can not have exactly two
countable models.

Proof. We only need to check it for small theories. Since small it has countable
saturated model.Since not ℵ0-categorical there is a non-isolated type that can be
omitted in a countable model.That type has a realisation in the saturated model.
Take a realisation and consider Th(M, ā).This is not ℵ0-categorical hence has a
model that is not saturated.This is not isomorphic to any of the others.

Conjecture [Vaught’s Conjecture] If a complete countable theory has fewer than
continuum many countable non-isomorphic models, the number of countable
models is at most countable.
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Stability

Exercise 6.14. Theorem 6.10 is valid if we consider Sn(M;A) for A countable.

This would lead to existence of a Prime model: A model that embeds
elementary into every model of T (e.g. Qalg is a prime model of ACF0).

Definition 6.15. Suppose T is a complete theory in a countable language and κ
and infinite cardinal. Then we say T is κ-stable if |Sn(M;A)| ≤ κ for all
A ⊆ M |= T with |A| ≤ κ.When κ = ℵ0 then we say the theory T is ω-stable.

Example 6.16.

ACF is ω-stable.

DLO is not ω-stable.

Exercise 6.17. If T is ω-stable, then it is κ-stable for all infinite κ.

Proposition 6.18. If T is ω-stable, then the isolated types in Sn(M;A) are dense.
If M |= T and A ⊆ M, then there is a prime model M0 ≺ M that contains A.

Applications of model theory 6. Space of types, Morley’s theorem and some classification 7/12



Categoricity and Morley’s theorem

Suppose T is countable complete theory. Here are examples of structures we
have have seen so far

ℵ0-categorical but not κ-categorical for all other κ (DLO, RG).

κ-categorical for all infinite κ (infinite set, infinite dim vector space over Fp).

κ-categorical in every κ for all but ℵ0 (ACF).

Not categorical for all κ (RCF).

This was conjectured by �Loś to be the full picture. It turns out to be true.

Theorem 6.19 (Morley 1965). Suppose T is a complete theory in a countable
language with infinite models. If T is κ-categorical for some κ ≥ ℵ0 then it is
categorical for all uncountable κ.

Examples 6.20.

Infinite sets

Divisiable abelian groups

ACF ...
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Counting types beyond ω-categorical theories
Definition 6.21. Let T be a complete L-theory, A ⊆ M |= T , M infinite. Let
S(M;A) :=

�
n Sn(M;A). The stability function of a theory is defined as follows:

Given and infinite κ

fT (κ) := sup{|S(M;A)| : A ⊆ M |= T , |A| = κ}.

The types {x = a} for a ∈ A are all distinct, hence |S(M;A)| ≥ |A|.
Moreover, |S(M;A)| ≤ |L(A)-formulas| ≤ 2|L|+ℵ0+|A| = 2ℵ0+|A|.

Therefore, κ ≤ fT (κ) ≤ 2κ.

Examples 6.22. Vector space V over Q: n-types ≈ affine subspace of V n ⇒
|Sn(V ;A)| = |A|+ ℵ0 ⇒ fVSQ(κ) = κ.

K |= ACF0: n-types over A ≈ prime ideals with coefficients in Q(A) ⇒
|Sn(K ;A)| = |A|+ ℵ0 ⇒ fACF0(κ) = κ.

Q |= DLO: 1-types over Q ≈ Dedekind cuts + infinite, infinitesimals ⇒
|S1(Q;Q)| = 2ℵ0 . In general, fDLO(κ) = ded(κ), where

ded(κ) := sup{|A| : A linear order with a dense subset of size κ}.
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Consequences of stability
Theorem 6.23 (Keisler; Shelah ’78). The stability function of fT must be one of
the following values for every infinite κ:

κ, κ+ 2ℵ0 , κℵ0 , ded(κ), ded(κ)ℵ0 , 2κ.

Exercise 6.24.

Theory T is ω-stable if and only if fT (κ) = κ.

Definition 6.25. Theory T is superstable if fT (κ) ≤ κ+ 2ℵ0 . We say T is stable if
fT (κ) ≤ κℵ0 (for all infinite κ).

Definition 6.26. Theory T has the order property if there are φ(x , y), M |= T ,
and sequences (ai )i∈ω, (bj)j∈ω in M such that M |= φ(ai , bj) ⇔ i ≤ j (i.e., φ
encodes an order).

Proposition 6.27. T has the order property ⇔ fT (κ) > κℵ0 , hence T unstable.

Sketch. (⇒) By compactness, use φ to encode DLO of size κ: fT (κ) ≥ ded(κ).
(⇐) Not order property ⇒ types are “definable”, hence fT (κ) ≤ κℵ0 .

There are some interesting geometric consequence of stability; some nice
dimension theory called Morley rank.
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Classification; Map of the universe

Check the map of the universe: http://forkinganddividing.com
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Exercises 6.28.

1 Prove that fT (κ) = sup{|S1(M;A)| : A ⊆ M |= T , |A| = κ}. This would also
imply that when we check κ-stablity we only need to check 1-types.
Hint: if b0b1 |= p(x0x1/A), then p is determined by tp(b0/A) and tp(b1/Ab0).

2 Let M |= DLO. Show that the space of 1-types S1(M;M) can be ordered in a
suitable way so that M embeds into S1(M;M) as a dense subset (where by
dense, we mean that for all x < y ∈ S1(M;M), there is z ∈ M such that
x ≤ z ≤ y). Deduce that |S1(M;M)| ≤ ded(κ).
(Harder!) Prove sup|M|=κ |S1(M;M)| = ded(κ).

3 Prove that fRCF(κ) = ded(κ).
Hint: Take R |= RCF Prove that every definable subset of R is definable using
only < (hence it’s a finite union of points and intervals). Then use Q1 and Q2.

4 Let L = {E} be the language with one binary relation symbol E . Let T be the
theory stating that E is an equivalence relation with infinitely many classes,
each one infinite in size. T has quantifier elimination (try to prove it when
revising the course).

a Computer the size of S1(M;A) for A ⊆ M |= T .
b Using Q1, deduce that T is ω-stable.
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