An excursion into Model Theory and its applications; Lecture 6

Zaniar Ghadernezhad

Imperial College London

LMS online lecture series - Fall 2020

Review

- L a countable language. Assume T is a complete theory.
- A type is a complete and consistent set of *L*-formulas (*n*-type in *n*-variables).
- The notion of types extends naturally to types over sets (e.g. over A where $A \subseteq M$ and $M \models T$).
- A structure *M* is κ-saturated if for every *A* ⊆ *M* of size |*A*| < κ, every type over *A* is realised in *M*.
- Given M and κ infinite, there is a κ -saturated $M' \succ M$.
- A type $p(\bar{x})$ is isolated if it is isolated by a formula $\psi(\bar{x})$ if $T \cup \{\psi(\bar{x})\}$ is consistent and

 $T \vdash \forall \bar{x}(\psi(\bar{x}) \to \phi(\bar{x})).$

By Omitting Type Theorem if p(x̄) is not isolated there is countable model of T that omits p(x̄).

\aleph_0 -categoricity

Assume L is countable language.

Proposition 6.1. A countable complete theory with infinite models is \aleph_0 -categorical if and only if all its countable models are \aleph_0 -saturated.

Proof. \implies Suppose *T* has a countable model *M* that is not saturated. That means there is a non-isolated type over a finite set in *M*. Find an elementary extension of *M* of countable size that realises the type. This contradicts \aleph_0 -categoricity. \Leftarrow Back and forth.

Corollary 6.2. T is \aleph_0 -categorical if and only if for every all types are isolated.

Exercise 6.3. If M is an L-structure and $\bar{a} \in M^n$. Then Th(M) is \aleph_0 -categorical if and only if $Th(M, \bar{a})$ is \aleph_0 -categorical.

Corollary 6.4. If T is \aleph_0 -categorical for every all types over finite sets are isolated.

Space of types

Definition 6.5. Let T be a theory and $n \in \mathbb{N}$. Denote $S_n(T)$ for the set of all n-types of T. When $A \subseteq M \models T$, M infinite let $S_n(M; A)$ denote the set of all n-types over A.

Proposition 6.6. The set $S_n(T)$ endow a topology: For any L-formula $\phi(\bar{x})$ let

$$[\phi] := \{ p \in S_n(T) : \phi(\bar{x}) \in p \}.$$

The collection of $[\phi]$ form a basis for a topology on $S_n(T)$.

- $[\bot] = \emptyset$ and $[\top] = S_n(T);$
- $[\phi] \cap [\psi] = [\phi \land \psi];$
- $\bullet \ [\phi] \cup [\psi] = [\phi \lor \psi].$
- Note that $S_n(T) \setminus [\phi] = [\neg \phi]$ i.e. basic open sets are closed (called *clopen*).
- Formula ψ isolates p if and only if $[\psi] = \{p\}$.
- $S_0(T)$ is the set of all consistent completions of T. The space $S_0(T)$ is homeomorphic to the stone space on $B_0(T)$ where $B_0(T)$ is the equivalence class \equiv_T of *L*-sentences ($\phi \equiv_T \psi$ iff $T \vdash \phi \leftrightarrow \psi$).

Space of Types

Proposition 6.7. $S_n(T)$ is a compact, totally disconnected Hausdorff space.

Proof. Totally disconnected follows from the fact above. If p_1, p_2 are two different types then there is ϕ such that $p_1 \vdash \phi$ but $p_2 \vdash \neg \phi$. Then $[\phi]$ and $[\neg \phi]$ are open sets which separate p_1 and p_2 . Suppose $\{[\phi_i] : i \in I\}$ is a family of closed subsets with FIP. That means $\phi_{i_1} \land \ldots \land \phi_{i_n}$ is consistent for all *n* hence $\{\phi_i(\bar{x}) : i \in I\}$ is consistent. Take any complete extension *p* of $\{\phi_i : i \in I\}$. Then $\bigcap[\phi_i] \neq \emptyset$.

Corollary 6.8. Assume T is a complete theory with infinite models in a countable language L. Then T is \aleph_0 -categorical if and only if $S_n(M; A)$ is finite for all finite A and all $n \in \mathbb{N}$.

Proof. By the previous argument every type in $S_n(M; A)$ is isolated. For every type $p \in S_n(M; A)$ take a formula ϕ_p that isolates it. Then $S_n(M; A) = \bigcup_p [\phi_p]$ (this is an open covering). By compactness of $S_n(M; A)$ we have a finite covering. Hence there are $\phi_{p_1}, \ldots, \phi_{p_n}$ such that $\bigcup_i [\phi_{p_i}] = S_n(M; A)$.

Exercise 6.9. (Ryll-Nardzewski Theorem) Assume T is countable complete theory with infinite models. T is \aleph_0 -categorical if and only if there are only finitely many formulas $\phi(\bar{x})$ up to equivalence modulo T.

Applications of model theory

Counting types

- We fully characterised \aleph_0 -categoricity in terms of $|S_n(T)|$ (or $|S_n(M; A)|$ for finite sets A).
- What are the possibilities of $|S_n(T)|$? Notice that $|S_n(T)| \le 2^{\aleph_0}$ and we have at most countable isolated types.
- If $|S_n(T)| > \aleph_0$ then we have uncountable many countable models of T.

Theorem 6.10. Assume T is a complete theory with infinite models in a countable language L. If $|S_n(T)| > \aleph_0$ then $|S_n(T)| = 2^{\aleph_0}$. Actually, $|S_n(T)| \le \aleph_0$ if and only if isolated types are dense in $S_n(T)$.

Proof. Since $|S_n(T)| > \aleph_0$ then there is ϕ such that $|[\phi]| > \aleph_0$. Claim: For every such ϕ there is ψ such that $|[\phi \land \neg \psi]| > \aleph_0$ and $|[\phi \land \psi]| > \aleph_0$. If not show that $p := \{\psi : |[\psi \land \psi]| > \aleph_0\}$ is consistent (i.e. finitely consistent). This implies that $S_n(T) = \bigcup_{\psi \notin p} [\phi \land \psi] \cup \{p\}$; contradiction (with $|S_n(T)| > \aleph_0$). Now using the proof build the following tree: Argue each branch is leading us to a type Different branches give us different types Number of branches is 2^{\aleph_0} . It only remains to show if isolated types are not dense then $|S_n(T)| > \aleph_0$. Try to

build a tree by taking basic open sets that do not contain isolated types.

Counting types

Definition 6.11. A theory T is called small if $|S_n(T)| \leq \aleph_0$ for all $n \in \mathbb{N}$.

Lemma 6.12. A complete countable theory is small if and only if it has countable saturated model.

Proof. Repeat a similar argument to Theorem but with some changes. Start with a countable model M_0 . In each step n + 1 choose M_{n+1} to be a countable model of $\text{Diag}_{el}(M_n) \cup \bigcup_p p(x_p)$ for all 1-types p over all finite sets $A \subseteq M_n$. The desired structure is the union of the elementary chain i.e. $M = \bigcup_{n \in \omega} M_n$.

Theorem 6.13 (Vaught). A countable complete theory can not have exactly two countable models.

Proof. We only need to check it for small theories. Since small it has countable saturated model. Since not \aleph_0 -categorical there is a non-isolated type that can be omitted in a countable model. That type has a realisation in the saturated model. Take a realisation and consider $Th(M, \bar{a})$. This is not \aleph_0 -categorical hence has a model that is not saturated. This is not isomorphic to any of the others.

Conjecture [Vaught's Conjecture] If a complete countable theory has fewer than continuum many countable non-isomorphic models, the number of countable models is at most countable.

Applications of model theory

Stability

Exercise 6.14. Theorem 6.10 is valid if we consider $S_n(M; A)$ for A countable.

This would lead to existence of a Prime model: A model that embeds elementary into every model of T (e.g. \mathbb{Q}^{alg} is a prime model of ACF₀).

Definition 6.15. Suppose T is a complete theory in a countable language and κ and infinite cardinal. Then we say T is κ -stable if $|S_n(M; A)| \le \kappa$ for all $A \subseteq M \models T$ with $|A| \le \kappa$. When $\kappa = \aleph_0$ then we say the theory T is ω -stable.

Example 6.16.

- ACF is ω-stable.
- DLO is not ω-stable.

Exercise 6.17. If T is ω -stable, then it is κ -stable for all infinite κ .

Proposition 6.18. If T is ω -stable, then the isolated types in $S_n(M; A)$ are dense. If $M \models T$ and $A \subseteq M$, then there is a prime model $M_0 \prec M$ that contains A.

Categoricity and Morley's theorem

Suppose ${\mathcal T}$ is countable complete theory. Here are examples of structures we have seen so far

- \aleph_0 -categorical but not κ -categorical for all other κ (DLO, RG).
- κ -categorical for all infinite κ (infinite set, infinite dim vector space over \mathbb{F}_p).
- κ -categorical in every κ for all but \aleph_0 (ACF).
- Not categorical for all κ (RCF).

This was conjectured by Łoś to be the full picture. It turns out to be true.

Theorem 6.19 (Morley 1965). Suppose T is a complete theory in a countable language with infinite models. If T is κ -categorical for some $\kappa \geq \aleph_0$ then it is categorical for all uncountable κ .

Examples 6.20.

- Infinite sets
- Divisiable abelian groups
- ACF ...

Counting types beyond ω -categorical theories

Definition 6.21. Let T be a complete L-theory, $A \subseteq M \models T$, M infinite. Let $S(M; A) := \bigcup_n S_n(M; A)$. The stability function of a theory is defined as follows: Given and infinite κ

$$f_{\mathcal{T}}(\kappa) := \sup\{|S(M; A)| : A \subseteq M \models T, |A| = \kappa\}.$$

- The types $\{x = a\}$ for $a \in A$ are all distinct, hence $|S(M; A)| \ge |A|$.
- Moreover, $|S(M; A)| \leq |L(A)$ -formulas $| \leq 2^{|L|+\aleph_0+|A|} = 2^{\aleph_0+|A|}$.
- Therefore, $\kappa \leq f_T(\kappa) \leq 2^{\kappa}$.

Examples 6.22. Vector space V over \mathbb{Q} : *n*-types \approx affine subspace of $V^n \Rightarrow |S_n(V; A)| = |A| + \aleph_0 \Rightarrow f_{VS_{\mathbb{Q}}}(\kappa) = \kappa$.

- $K \models ACF_0$: *n*-types over $A \approx$ prime ideals with coefficients in $\mathbb{Q}(A) \Rightarrow |S_n(K; A)| = |A| + \aleph_0 \Rightarrow f_{ACF_0}(\kappa) = \kappa$.
- $\mathbb{Q} \models \mathsf{DLO}$: 1-types over $\mathbb{Q} \approx \mathsf{Dedekind}$ cuts + infinite, infinitesimals $\Rightarrow |S_1(\mathbb{Q}; \mathbb{Q})| = 2^{\aleph_0}$. In general, $f_{\mathsf{DLO}}(\kappa) = \mathsf{ded}(\kappa)$, where $\mathsf{ded}(\kappa) := \sup\{|A| : A \text{ linear order with a dense subset of size } \kappa\}$.

Consequences of stability

Theorem 6.23 (Keisler; Shelah '78). The stability function of f_T must be one of the following values for every infinite κ :

 $\kappa, \quad \kappa + 2^{\aleph_0}, \quad \kappa^{\aleph_0}, \quad \operatorname{ded}(\kappa), \quad \operatorname{ded}(\kappa)^{\aleph_0}, \quad 2^{\kappa}.$

Exercise 6.24.

Theory T is ω -stable if and only if $f_T(\kappa) = \kappa$.

Definition 6.25. Theory T is superstable if $f_T(\kappa) \leq \kappa + 2^{\aleph_0}$. We say T is stable if $f_T(\kappa) \leq \kappa^{\aleph_0}$ (for all infinite κ).

Definition 6.26. Theory T has the order property if there are $\phi(\overline{x}, \overline{y})$, $M \models T$, and sequences $(a_i)_{i \in \omega}$, $(b_j)_{j \in \omega}$ in M such that $M \models \phi(a_i, b_j) \Leftrightarrow i \leq j$ (i.e., ϕ encodes an order).

Proposition 6.27. T has the order property $\Leftrightarrow f_T(\kappa) > \kappa^{\aleph_0}$, hence T unstable.

Sketch. (\Rightarrow) By compactness, use ϕ to encode DLO of size κ : $f_T(\kappa) \ge ded(\kappa)$. (\Leftarrow) Not order property \Rightarrow types are "definable", hence $f_T(\kappa) \le \kappa^{\aleph_0}$.

There are some interesting geometric consequence of stability; some nice dimension theory called Morley rank.

Applications of model theory

6. Space of types, Morley's theorem and some classification

Classification; Map of the universe

Check the map of the universe: http://forkinganddividing.com

Exercises 6.28.

- Prove that $f_T(\kappa) = \sup\{|S_1(M; A)| : A \subseteq M \models T, |A| = \kappa\}$. This would also imply that when we check κ -stability we only need to check 1-types. Hint: if $b_0b_1 \models p(x_0x_1/A)$, then p is determined by $tp(b_0/A)$ and $tp(b_1/Ab_0)$.
- **2** Let $M \models \text{DLO}$. Show that the space of 1-types $S_1(M; M)$ can be ordered in a suitable way so that M embeds into $S_1(M; M)$ as a dense subset (where by dense, we mean that for all $x < y \in S_1(M; M)$, there is $z \in M$ such that $x \le z \le y$). Deduce that $|S_1(M; M)| \le \text{ded}(\kappa)$. (Harder!) Prove $\sup_{|M|=\kappa} |S_1(M; M)| = \text{ded}(\kappa)$.
- B Prove that f_{RCF}(κ) = ded(κ). Hint: Take ℝ ⊨ RCF Prove that every definable subset of ℝ is definable using only < (hence it's a finite union of points and intervals). Then use Q1 and Q2.</p>
- **4** Let $L = \{E\}$ be the language with one binary relation symbol E. Let T be the theory stating that E is an equivalence relation with infinitely many classes, each one infinite in size. T has quantifier elimination (try to prove it when revising the course).
 - **a** Computer the size of $S_1(M; A)$ for $A \subseteq M \models T$.
 - **b** Using Q1, deduce that T is ω -stable.