An excursion into Model Theory and its applications; Lecture 5

Zaniar Ghadernezhad

Imperial College London

LMS online lecture series - Fall 2020

Lecture 5 Types and saturated models

Types, informal

Consider $L_{\rm oring} = \{<,0,1,+,\cdot\}$.

- Let ℝ* := ℝ^N/U where U is a non-principal ultrafilter (ℝ* called non-standard extension of ℝ).
- By Łoś's Theorem we have $\mathbb{R} \prec \mathbb{R}^*$.
- In \mathbb{R}^* there exist infinitesimal positive numbers: There exists $a \in \mathbb{R}^*$ such that $0 < a < \frac{1}{n}$ for every $n \in \mathbb{N}$ (recall the element $\epsilon = [(1, \frac{1}{2}, \frac{1}{3}, \ldots)]).$

Some proofs in \mathbb{R} can be simplified by working in \mathbb{R}^* , using infinitesimals.

- To understand a structure M, it can be useful to pass to some $M^* \succ M$ since M^* contains "idealised elements".
- The *idealised elements* in M^* are those that are described by (infinitely many) L(M)-formulas.

In \mathbb{R} (in L_{oring}) for every $n \in \mathbb{N}$ consider the formula $\phi_n(x) : 0 < x < \frac{1}{n}$. An infinitesimal element in \mathbb{R}^* is a realisation of $\Sigma(x) := \{\phi_n(x) : n \in \mathbb{N}\}$. Sets of formulas like $\Sigma(x)$ are called *types*.

Types, formal

Fix a language *L*, an *L*-theory *T* and $n \in \mathbb{N}$. Below, all tuples \overline{x} , \overline{a} are *n*-tuples. Definition 5.1. Consider a set $\Sigma(\overline{x})$ of *L*-formulas.

- A realisation of $\Sigma(\overline{x})$ in some $M \models T$ is a tuple $\overline{a} \in M^n$ such that $M \models \phi(\overline{a})$ for all $\phi(\overline{x}) \in \Sigma(\overline{x})$. Notation: $M \models \Sigma(\overline{x})$.
- $\Sigma(\overline{x})$ is consistent (with T) if $\Sigma(\overline{x})$ has a realisation.
- $\Sigma(\bar{x})$ is complete (modulo *T*) if for every $\psi(\bar{x})$, either $\Sigma(\bar{x}) \vdash \psi$ or $\Sigma(\bar{x}) \vdash \neg \psi$.
- A complete and consistent set of L-formulas Σ(x̄) (in n-variables) is called an (n-)type of T.

Fact 5.2. Every consistent set $\Sigma(\overline{x})$ of formulas is contained in a type (Zorn's Lemma).

Example 5.3.

In \mathbb{R} (in L_{oring}) the set $\Sigma(x) = \{0 < x < \frac{1}{n} : n \in \mathbb{N}\}$ is a 1-type. (Note that $x < \frac{1}{3}$ is a shorthand for $(1 + 1 + 1) \cdot x < 1$).

• Any infinitesimal element of \mathbb{R}^* is a realisation of $\Sigma(x)$.

Exercise 5.4. Prove that $\Sigma(x) = \{0 < x < \frac{1}{n} : n \in \mathbb{N}\}\$ is complete modulo RCF.

Consistency of types

Proposition 5.5. A set of formulas $\Sigma(\bar{x})$ is consistent if and only if it is finitely consistent (with T).

Proof.

- Set $L' := L \cup C_n$, where C_n is set of size *n* of new constants.
- Set $T' := T \cup \Sigma(\overline{c})$, where $\Sigma(\overline{c}) := \{\phi(\overline{c}) : \phi(\overline{x}) \in \Sigma(\overline{x})\}.$
- When $\Sigma(\bar{x})$ is finitely consistent, then T' is finitely consistent. (A realisation $M \models \Sigma(\bar{a})$ yields a model of $T \cup \Sigma(\bar{c})$ by setting $\bar{c}^M = \bar{a}$.)
- Compactness Theorem implies T' is consistent, i.e., there exists $M' \models T'$. Hence $\Sigma(\bar{x})$ is consistent (with T).

Example 5.6.

- Consider again T = RCF (in L_{oring}) and $\Sigma(x) = \{0 < x < \frac{1}{n} : n \in \mathbb{N}\}.$
- Any finite subset of $\Sigma(x)$ has a realization $a \in \mathbb{R}$: just take a small enough.
- Thus $\Sigma(x)$ is consistent.

Completeness of types

Proving completeness of sets of formulas is often hard: normally, we need to rely on good quantifier elimination results (compare Exercise 5.4).

An easy way to obtain types:

Definition 5.7. Given a structure M and $\overline{a} \in M^n$, set $tp(\overline{a}) := \{\phi(\overline{x}) \mid M \models \phi(\overline{a})\}$ (the type of \overline{a}).

Exercise 5.8. Prove that every type of a theory T is the type of some \overline{a} for some $\overline{a} \in M^n$ in some $M \models T$.

Exercise 5.9. Let $M_1, M_2 \models T$ and $\bar{a}_i \in M_i^n$. The type $tp(\bar{a}_i)$ can be identified with the complete $L(C_n)$ -theory $Th(M, \bar{a}_i)$. In particular, $tp(\bar{a}_1) = tp(\bar{a}_2)$ if and only if $(M_1, \bar{a}_1) \equiv_{L(C_n)} (M_2, \bar{a}_2)$

Exercise 5.10. Write some types of $Th(\mathbb{Z})$ in the language $L = \{+\}$. Find one that is *not* realised in \mathbb{Z} .

Isolated types

We have seen how to realise a type.

Definition 5.11. Consider a set $\Sigma(\bar{x})$ of *L*-formulas and *T* an *L*-theory. A model $M \models T$ omits $\Sigma(\bar{x})$ if $\Sigma(\bar{x})$ is not realised in *M*.

Example 5.12. Again in L_{oring} and T = RCF. Then \mathbb{R} omits $\Sigma(x) = \{0 < x < \frac{1}{n} : n \in \mathbb{N}\}.$

Definition 5.13. Suppose $\Sigma(\bar{x})$ is a consistent set of \mathcal{L} -formulas. An L-formula $\psi(\bar{x})$ isolates $\Sigma(\bar{x})$ if $T \cup \{\psi(\bar{x})\}$ is consistent and for all $\phi(\bar{x}) \in \Sigma(\bar{x})$

 $T \vdash \forall \bar{x}(\psi(\bar{x}) \to \phi(\bar{x})).$

If ψ(x̄) isolates Σ(x̄) then a model of T that realises ψ(x̄) realises also Σ(x̄).
If T is a complete theory every isolated Σ(x̄) is realised in T (in every model).

Omitting Types Theorem

Theorem 5.14. Let T be an L-theory in a countable language L and $\Sigma(\bar{x})$ a consistent set of L-formulas. If $\Sigma(\bar{x})$ is not isolated then T has model which omits $\Sigma(\bar{x})$.

Proof. Assume \bar{x} is 1-tuple. Let $L(C) := L \cup C$ where C is a countable set of new constants. Goal: Find T^* an extension of T with the following properties:

For every L(C)-formulas $\psi(x)$ there exists $c \in C$ such that $\exists x.\psi(x) \rightarrow \psi(c) \in T^*$.

2 For every $c \in C$ there is $\theta(\bar{x}) \in \Sigma(\bar{x})$ such that $\neg \theta(c) \in T^*$.

If T^* is consistent then we are done! Take a countable model that contain only the constants (use a Downward Löwenheim-Skolem and Tarski's test) Construct T^* inductively. Enumerate C and L(C)-formulas $\{\psi_i : i \in \omega\}$. Construct $T =: T_0 \subseteq T_1 \subseteq \ldots$ of consistent extension of T by finite set of L(C)-sentences satisfying 1 and 2. If T_{2k} is constructed pick $c \in C$ that does not occur in $T_{2k} \cup \{\psi_i(\bar{x})\}$ and

consider $T_{2k+1} := T_{2k} \cup \{\exists x.\psi(x) \to \psi(c)\}$. Suppose T_{2k+1} is constructed. Note that $T_{2k+1} = T \cup \{\delta(c_k, \bar{c})\}$. The formula $\exists \bar{y}\delta(x, \bar{y})$ does not isolate $\Sigma(x)$. Hence there exists $\theta(x) \in \Sigma(x)$ such that $T \cup \{\exists \bar{y}\delta(x, \bar{y}) \land \neg \theta(x)\}$ is consistent. Thus $T_{2k+2} := T_{2k+1} \cup \{\neg \theta(c_k)\}$ is consistent.

Types over a set

Definition 5.15. Fix an *L*-structure *M* and $B \subseteq M$.

- A type over B is a type in the language L(B) of the L(B)-theory Th(M).
- For $M' \succ M$ and $\overline{a} \in (M')^n$ the type of \overline{a} over B tp (\overline{a}/B) is the type of \overline{a} in the language L(B).

Example 5.16. Let $L = \{<\}$ and T = DLO.

- The only 1-type of {*x* = *x*} (that's essentially the only consistent formula we can write!). The only 2-types are {*x* = *y*}, {*x* < *y*} and {*y* < *x*}.
- Any real number $r \in \mathbb{R}$ yields a type $p_r(x) := tp(r/\mathbb{Q})$. Example: $p_{\pi}(x)$ contains 3 < x, 3.1 < x, ..., x < 4, x < 3.2, ...
- For r < r', we have $p_r \neq p_{r'}$, since for $q \in \mathbb{Q}$ with r < q < r', we have $(q < x) \in p_{r'}$ but $(q < x) \notin p_r$.
- But there exist even more 1-types over \mathbb{Q} , e.g. $\{0 < x\} \cup \{x < q \mid q \in \mathbb{Q}, q > 0\}$. Exercise: make a list of *all* 1-types over \mathbb{Q} .

Exercise 5.17. Let $K \models ACF$. Show that 1-types over K correspond to prime ideals of K[X]. (Hint: map $I \mapsto \{P(x) = 0 \mid P \in I\} \cup \{Q(x) \neq 0 \mid Q \notin I\}$.) Generalise this to 1-types over L when L is a sub field of K.

Saturated models

Definition 5.18. A structure M is κ -saturated if for every $A \subseteq M$ of size $|A| < \kappa$, every type over A is realised in M; it is saturated if it is |M|-saturated.

Examples 5.19.

- $\mathbb{Q}^{alg} \models ACF$ is not \aleph_0 -saturated: $\{P(x) \neq 0 \mid P \in \mathbb{Z}[X] \setminus \{0\}\}$ is not realised (what ideal corresponds to this type)?
- The algebraic closure of $\mathbb{Q}(T_1, T_2, \ldots)$ is saturated.
- $\mathbb{C} \models \mathsf{ACF}$ is saturated.

Proposition 5.20. Suppose M is κ -saturated, $N \equiv M$ and cardinality of $|N| \leq \kappa$. Then there is an elementary embedding of N into M.

Proof. Enumerate elements of $N := \{n_i : i \in I\}$ where $|I| \le \kappa$. Consider $\Sigma = \{\phi(x_i) : N \models \phi(n_i), i \in I\}$. Since $N \equiv M$ then Σ is finitely satisfiable in M. Since M is κ -saturated then Σ is realised in M. Now define a function between N and satisfaction of Σ and show it is an elementary map.

Exercise 5.21. Suppose M and N are two saturated structures and $N \equiv M$. Then M and N are isomorphic.

Applications of model theory

5. Types and saturated models

Saturated models

Example 5.22. Let $L = \{<\}$. Recall $\mathbb{Q} \prec \mathbb{R}$. Then:

- \mathbb{Q} is saturated (\aleph_0 -saturated);
- \mathbb{Q} is not \aleph_1 -saturated: $tp(\pi/\mathbb{Q})$ is not realised;

■ \mathbb{R} is not \aleph_1 -saturated: $\{0 < x < q \mid q \in \mathbb{Q}^{>0}\}$ is not realised.

An \aleph_1 -saturated extension of \mathbb{Q} will contain infinite points, infinitesimals, ... It must have size $\geq 2^{\aleph_0}$ (as that's the number of types over \mathbb{Q}).

Exercise 5.23. Suppose U is a non-principal ultrafilter on \mathbb{N} . Assume M_i for $i \in \mathbb{N}$ is a family of L-structures. Show $\prod_{i \in \mathbb{N}} M_i/U$ is \aleph_1 -saturated.

Proposition 5.24. For all M and all infinite κ , there is a κ -saturated $M' \succ M$.

Proof. We obtain the desired structure as union of an elementary chain of length κ^+ of structures (κ^+ is the first cardinal bigger than κ). Let $M_0 = M$ and in a successor step $\alpha = \beta + 1$ choose M_α to be the model of $\text{Diag}_{el}(M_\beta) \cup \bigcup_p p(x_p)$ for all 1-types p over sets $A \subseteq M$ such that $|A| < \kappa$. In the limit ordinal $M_\alpha := \bigcup_{\beta < \alpha} M_\beta$. Now let $M' = \bigcup_{\alpha < \kappa^+} M_\alpha$. Show that M' is κ -saturated (use the fact that κ^+ is a regular cardinal).

Exercises 5.25.

- **I** Let $L = L_{ring}$, $K \models ACF$. Let $B \subseteq K$ be a subset. Let K_0 be the subfield of K generated by B. Consider the type tp(a/B) of an element $a \in K$. Prove:
 - If a is algebraic over K_0 , then there exist only finitely many $a' \in K$ with tp(a'/B) = tp(a/B). What ideal corresponds to tp(a/B)?
 - **2** If a is not algebraic over K_0 , then for any a' that is not algebraic over K_0 , we have tp(a'/B) = tp(a/B). What ideal corresponds to tp(a/B)?
 - 3 What is the unique non-realised type over K? Why?
- 2 Give a list of all 3-types of DLO.
- **3** Consider $\mathbb{R} \models \mathsf{DLO}$. Give a list of all 1-types over \mathbb{Q} and over \mathbb{R} in $L = \{<\}$.
- Call a graph random if for every disjoint finite sets of vertices A, B, there is a vertex v connected to every point of A but to no point of B. Let G, H be random graphs.
 - 1 Axiomatise the theory RG of random graphs (with $L = \{E\}$).
 - **2** Prove that the family \mathcal{I} of all partial isomorphisms $G \to H$ with finite domains, i.e., the isomorphisms between finite (induced) subgraphs of G and H, has the back-and-forth property.
 - **3** Hence RG has quantifier elimination. List all 1-types over G.