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Types, informal

Consider Loring = {<, 0, 1,+, ·} .

Let R∗ := RN/U where U is a non-principal ultrafilter (R∗ called non-standard
extension of R).

By  Loś’s Theorem we have R ≺ R∗.
In R∗ there exist infinitesimal positive numbers:

There exists a ∈ R∗ such that 0 < a < 1
n for every n ∈ N

(recall the element ε = [(1, 12 ,
1
3 , . . .)]).

Some proofs in R can be simplified by working in R∗, using infinitesimals.

To understand a structure M, it can be useful to pass to some M∗ � M since
M∗ contains “idealised elements”.

The idealised elements in M∗ are those that are described by (infinitely many)
L(M)-formulas.

In R (in Loring) for every n ∈ N consider the formula φn(x) : 0 < x < 1
n .An

infinitesimal element in R∗ is a realisation of Σ(x) := {φn(x) : n ∈ N}.Sets of
formulas like Σ(x) are called types.
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Types, formal
Fix a language L, an L-theory T and n ∈ N. Below, all tuples x , a are n-tuples.

Definition 5.1. Consider a set Σ(x̄) of L-formulas.

A realisation of Σ(x) in some M |= T is a tuple a ∈ Mn such that M |= φ(a)
for all φ(x) ∈ Σ(x). Notation: M |= Σ(x̄).

Σ(x) is consistent (with T ) if Σ(x̄) has a realisation.

Σ(x̄) is complete (modulo T ) if for every ψ(x), either Σ(x̄) ` ψ or Σ(x̄) ` ¬ψ.

A complete and consistent set of L-formulas Σ(x̄) (in n-variables) is called an
(n-)type of T .

Fact 5.2. Every consistent set Σ(x) of formulas is contained in a type
(Zorn’s Lemma).

Example 5.3.

In R (in Loring) the set Σ(x) = {0 < x < 1
n : n ∈ N} is a 1-type. (Note that

x < 1
3 is a shorthand for (1 + 1 + 1) · x < 1).

Any infinitesimal element of R∗ is a realisation of Σ(x).

Exercise 5.4. Prove that Σ(x) = {0 < x < 1
n : n ∈ N} is complete modulo RCF.
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Consistency of types

Proposition 5.5. A set of formulas Σ(x) is consistent if and only if it is finitely
consistent (with T ).

Proof.

Set L′ := L ∪ Cn, where Cn is set of size n of new constants.

Set T ′ := T ∪ Σ(c̄), where Σ(c) := {φ(c) : φ(x) ∈ Σ(x)}.
When Σ(x̄) is finitely consistent, then T ′ is finitely consistent.
(A realisation M |= Σ(a) yields a model of T ∪ Σ(c) by setting cM = a.)

Compactness Theorem implies T ′ is consistent, i.e., there exists M ′ |= T ′.
Hence Σ(x̄) is consistent (with T ).

Example 5.6.

Consider again T = RCF (in Loring) and Σ(x) = {0 < x < 1
n : n ∈ N}.

Any finite subset of Σ(x) has a realization a ∈ R: just take a small enough.

Thus Σ(x) is consistent.
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Completeness of types

Proving completeness of sets of formulas is often hard: normally, we need to
rely on good quantifier elimination results (compare Exercise 5.4).

An easy way to obtain types:

Definition 5.7. Given a structure M and a ∈ Mn, set tp(a) := {φ(x) | M |= φ(a)}
(the type of a).

Exercise 5.8. Prove that every type of a theory T is the type of some a for some
a ∈ Mn in some M |= T .

Exercise 5.9. Let M1,M2 |= T and āi ∈ Mn
i . The type tp(āi ) can be identified

with the complete L(Cn)-theory Th(M, āi ). In particular, tp(ā1) = tp(ā2) if and
only if (M1, ā1) ≡L(Cn) (M2, ā2)

Exercise 5.10. Write some types of Th(Z) in the language L = {+}. Find one
that is not realised in Z.

Applications of model theory 5. Types and saturated models 4/10



Isolated types

We have seen how to realise a type.

Definition 5.11. Consider a set Σ(x̄) of L-formulas and T an L-theory. A model
M |= T omits Σ(x̄) if Σ(x̄) is not realised in M.

Example 5.12. Again in Loring and T = RCF . Then R omits
Σ(x) = {0 < x < 1

n : n ∈ N}.

Definition 5.13. Suppose Σ(x̄) is a consistent set of L-formulas. An L-formula
ψ(x̄) isolates Σ(x̄) if T ∪ {ψ(x̄)} is consistent and for all φ(x̄) ∈ Σ(x̄)

T ` ∀x̄(ψ(x̄)→ φ(x̄)).

If ψ(x̄) isolates Σ(x̄) then a model of T that realises ψ(x̄) realises also Σ(x̄).

If T is a complete theory every isolated Σ(x̄) is realised in T (in every model).
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Omitting Types Theorem
Theorem 5.14. Let T be an L-theory in a countable language L and Σ(x̄) a
consistent set of L-formulas. If Σ(x̄) is not isolated then T has model which
omits Σ(x̄).

Proof. Assume x̄ is 1-tuple. Let L(C ) := L∪C where C is a countable set of new
constants. Goal: Find T ∗ an extension of T with the following properties:

1 For every L(C )-formulas ψ(x) there exists c ∈ C such that
∃x .ψ(x)→ ψ(c) ∈ T ∗.

2 For every c ∈ C there is θ(x̄) ∈ Σ(x̄) such that ¬θ(c) ∈ T ∗.

If T ∗ is consistent then we are done! Take a countable model that contain only
the constants (use a Downward Löwenheim-Skolem and Tarski’s test)
Construct T ∗ inductively. Enumerate C and L(C )-formulas {ψi : i ∈ ω}.
Construct T =: T0 ⊆ T1 ⊆ . . . of consistent extension of T by finite set of
L(C )-sentences satisfying 1 and 2.
If T2k is constructed pick c ∈ C that does not occur in T2k ∪ {ψi (x̄)} and
consider T2k+1 := T2k ∪ {∃x .ψ(x)→ ψ(c)}. Suppose T2k+1 is constructed. Note
that T2k+1 = T ∪ {δ(ck , c̄)}. The formula ∃ȳδ(x , ȳ) does not isolate Σ(x).
Hence there exists θ(x) ∈ Σ(x) such that T ∪ {∃ȳδ(x , ȳ) ∧ ¬θ(x)} is consistent.
Thus T2k+2 := T2k+1 ∪ {¬θ(ck)} is consistent.
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Types over a set
Definition 5.15. Fix an L-structure M and B ⊆ M.

A type over B is a type in the language L(B) of the L(B)-theory Th(M).

For M ′ � M and a ∈ (M ′)n the type of a over B tp(a/B) is the type of a in
the language L(B).

Example 5.16. Let L = {<} and T = DLO.

The only 1-type of {x = x} (that’s essentially the only consistent formula we
can write!). The only 2-types are {x = y}, {x < y} and {y < x}.
Any real number r ∈ R yields a type pr (x) := tp(r/Q).
Example: pπ(x) contains 3 < x , 3.1 < x , . . . , x < 4, x < 3.2, . . .

For r < r ′, we have pr 6= pr ′ , since for q ∈ Q with r < q < r ′, we have
(q < x) ∈ pr ′ but (q < x) /∈ pr .

But there exist even more 1-types over Q, e.g.
{0 < x} ∪ {x < q | q ∈ Q, q > 0}. Exercise: make a list of all 1-types over Q.

Exercise 5.17. Let K |= ACF. Show that 1-types over K correspond to prime
ideals of K [X ]. (Hint: map I 7→ {P(x) = 0 | P ∈ I} ∪ {Q(x) 6= 0 | Q /∈ I}.)
Generalise this to 1-types over L when L is a sub field of K .
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Saturated models
Definition 5.18. A structure M is κ-saturated if for every A ⊆ M of size |A| < κ,
every type over A is realised in M; it is saturated if it is |M|-saturated.

Examples 5.19.

Qalg |= ACF is not ℵ0-saturated: {P(x) 6= 0 | P ∈ Z[X ] r {0}} is not realised
(what ideal corresponds to this type)?

The algebraic closure of Q(T1,T2, . . .) is saturated.

C |= ACF is saturated.

Proposition 5.20. Suppose M is κ-saturated, N ≡ M and cardinality of |N| ≤ κ.
Then there is an elementary embedding of N into M.

Proof. Enumerate elements of N := {ni : i ∈ I} where |I | ≤ κ. Consider
Σ = {φ(xi ) : N |= φ(ni ), i ∈ I}. Since N ≡ M then Σ is finitely satisfiable in M.
Since M is κ-saturated then Σ is realised in M. Now define a function between N
and satisfaction of Σ and show it is an elementary map.

Exercise 5.21. Suppose M and N are two saturated structures and N ≡ M. Then
M and N are isomorphic.
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Saturated models
Example 5.22. Let L = {<}. Recall Q ≺ R. Then:

Q is saturated (ℵ0-saturated);

Q is not ℵ1-saturated: tp(π/Q) is not realised;

R is not ℵ1-saturated: {0 < x < q | q ∈ Q>0} is not realised.

An ℵ1-saturated extension of Q will contain infinite points, infinitesimals, . . .
It must have size ≥ 2ℵ0 (as that’s the number of types over Q).

Exercise 5.23. Suppose U is a non-principal ultrafilter on N. Assume Mi for i ∈ N
is a family of L-structures. Show

∏
i∈N Mi/U is ℵ1-saturated.

Proposition 5.24. For all M and all infinite κ, there is a κ-saturated M ′ � M.

Proof. We obtain the desired structure as union of an elementary chain of length
κ+ of structures (κ+ is the first cardinal bigger than κ). Let M0 = M and in a
successor step α = β + 1 choose Mα to be the model of Diagel(Mβ) ∪

⋃
p p(xp)

for all 1-types p over sets A ⊆ M such that |A| < κ. In the limit ordinal
Mα :=

⋃
β<αMβ . Now let M ′ =

⋃
α<κ+ Mα. Show that M ′ is κ-saturated (use

the fact that κ+ is a regular cardinal).
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Exercises 5.25.

1 Let L = Lring, K |= ACF. Let B ⊆ K be a subset. Let K0 be the subfield of K
generated by B. Consider the type tp(a/B) of an element a ∈ K . Prove:

1 If a is algebraic over K0, then there exist only finitely many a′ ∈ K with
tp(a′/B) = tp(a/B). What ideal corresponds to tp(a/B)?

2 If a is not algebraic over K0, then for any a′ that is not algebraic over K0, we
have tp(a′/B) = tp(a/B). What ideal corresponds to tp(a/B)?

3 What is the unique non-realised type over K? Why?

2 Give a list of all 3-types of DLO.

3 Consider R |= DLO. Give a list of all 1-types over Q and over R in L = {<}.
4 Call a graph random if for every disjoint finite sets of vertices A,B, there is a

vertex v connected to every point of A but to no point of B. Let G ,H be
random graphs.

1 Axiomatise the theory RG of random graphs (with L = {E}).
2 Prove that the family I of all partial isomorphisms G → H with finite domains,

i.e., the isomorphisms between finite (induced) subgraphs of G and H, has the
back-and-forth property.

3 Hence RG has quantifier elimination. List all 1-types over G .
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