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Types, informal

Consider Loving = {<,0,1,+,-} .
m Let R* := RY/U where U is a non-principal ultrafilter (R* called non-standard
extension of R).

m By tod's Theorem we have R < R*.

m In R* there exist infinitesimal positive numbers:
There exists a € R* such that 0 < a < % for every n € N
(recall the element € = [(1,1,%,...)]).
Some proofs in R can be simplified by working in R*, using infinitesimals.
m To understand a structure M, it can be useful to pass to some M* >~ M since
M* contains “idealised elements”.

m The idealised elements in M* are those that are described by (infinitely many)
L(M)-formulas.

In R (in Loving) for every n € N consider the formula ¢,(x) : 0 < x < %./—\n

infinitesimal element in R* is a realisation of X(x) := {#n(x) : n € N}.Sets of
formulas like X(x) are called types.
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Types, formal

Fix a language L, an L-theory T and n € N. Below, all tuples X, a are n-tuples.

Definition 5.1. Consider a set X(x) of L-formulas.

m A realisation of X(X) in some M |= T is a tuple 3 € M" such that M = ¢(3)
for all ¢(x) € X(X). Notation: M = X(X).

m X (X) is consistent (with T) if £(X) has a realisation.

m Y (X) is complete (modulo T) if for every ¥(x), either X(X) F ¢ or X(x) F —.

m A complete and consistent set of L-formulas £ (x) (in n-variables) is called an
(n-)type of T.

Fact 5.2. Every consistent set ¥(X) of formulas is contained in a type

(Zorn's Lemma).

Example 5.3.

B In R (in Loying) the set £(x) = {0 < x < 1:neN}isa l-type. (Note that
x < § is a shorthand for (1+1+1)-x <1).

m Any infinitesimal element of R* is a realisation of X(x).

Exercise 5.4. Prove that ¥(x) = {0 < x < 1 : n € N} is complete modulo RCF.
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Consistency of types

Proposition 5.5. A set of formulas ¥(X) is consistent if and only if it is finitely
consistent (with T).

Proof.
m Set L' := LU C,, where C, is set of size n of new constants.
m Set T':= T UX(C), where £(¢) := {4(?) : ¢(X) € X(xX)}.
m When X (X) is finitely consistent, then T’ is finitely consistent.
(A realisation M |= ¥(3) yields a model of T U X(€) by setting " = 3.)

m Compactness Theorem implies T’ is consistent, i.e., there exists M’ = T'.
Hence X (x) is consistent (with T).

Example 5.6.
m Consider again T = RCF (in Loying) and Z(x) = {0 < x < 1:ne N}
m Any finite subset of X(x) has a realization a € R: just take a small enough.

m Thus X(x) is consistent.
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Completeness of types

m Proving completeness of sets of formulas is often hard: normally, we need to
rely on good quantifier elimination results (compare Exercise 5.4).
An easy way to obtain types:

Definition 5.7. Given a structure M and @ € M”", set tp(3) := {¢(X) | M E #(3)}
(the type of 3).

Exercise 5.8. Prove that every type of a theory T is the type of some a for some
a€ M" insome M = T.

Exercise 5.9. Let My, Mo = T and 3; € M. The type tp(a;) can be identified
with the complete L(C,)-theory Th(M, 3;). In particular, tp(3;) = tp(3y) if and
only if (M1, a1) =((c,) (M2, 32)

Exercise 5.10. Write some types of Th(Z) in the language L = {+}. Find one
that is not realised in Z.
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Isolated types

We have seen how to realise a type.

Definition 5.11. Consider a set X(x) of L-formulas and T an L-theory. A model
M = T omits X(X) if £(X) is not realised in M.

Example 5.12. Again in Loying and T = RCF. Then R omits
T(x)={0<x<l:neN}

Definition 5.13. Suppose X (X) is a consistent set of £-formulas. An L-formula
(X) isolates £(X) if T U {t(x)} is consistent and for all ¢(x) € X (%)

T EVx(¥(x) = ¢(x)).

m If ¢)(X) isolates X(x) then a model of T that realises ¥(x) realises also X (X).

m If T is a complete theory every isolated ¥(X) is realised in T (in every model).

Applications of model theory 5. Types and saturated models 5/10



Omitting Types Theorem

Theorem 5.14. Let T be an L-theory in a countable language L and ¥(X) a
consistent set of L-formulas. If ¥(X) is not isolated then T has model which
omits ¥(X).

Proof. Assume X is 1-tuple. Let L(C) := LU C where C is a countable set of new
constants. Goal: Find T* an extension of T with the following properties:

For every L(C)-formulas 1(x) there exists ¢ € C such that
Ix.ap(x) = ¥(c) € T*.
For every ¢ € C there is §(x) € £(x) such that =0(c) € T*.

If T is consistent then we are done! Take a countable model that contain only
the constants (use a Downward Léwenheim-Skolem and Tarski's test)

Construct T* inductively. Enumerate C and L(C)-formulas {¢; : i € w}.
Construct T =: To C T1 C ... of consistent extension of T by finite set of
L(C)-sentences satisfying 1 and 2.

If T, is constructed pick ¢ € C that does not occur in Ty U {;(x)} and
consider Toyy1 := Tox U{Ix.00(x) = ¥(c)}. Suppose Taki1 is constructed. Note
that Toxr1 = T U {d(ck, €)}. The formula 3yd(x, y) does not isolate X (x).
Hence there exists 6(x) € X(x) such that T U {3yd(x,y) A —0(x)} is consistent.
Thus Tokq2 := Toks1 U {—0(ck)} is consistent. O
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Types over a set
Definition 5.15. Fix an L-structure M and B C M.

m A type over B is a type in the language L(B) of the L(B)-theory Th(M).

m For M’ = M and 3 € (M')" the type of 3 over B tp(a/B) is the type of 3 in
the language L(B).

Example 5.16. Let L = {<} and T = DLO.
m The only 1-type of {x = x} (that's essentially the only consistent formula we
can write!). The only 2-types are {x =y}, {x < y} and {y < x}.
m Any real number r € R yields a type p,(x) := tp(r/Q).
Example: pr(x) contains 3 < x,3.1<x, ..., x<4, x<32, ...
m For r < r’, we have p, # p,/, since for g € Q with r < g < r’, we have
(g < x) € pr but (g < x) ¢ p,.
m But there exist even more 1-types over Q, e.g.
{0 <x}U{x< q|qg€eQ,qg>0}. Exercise: make a list of all 1-types over Q.

Exercise 5.17. Let K = ACF. Show that 1-types over K correspond to prime
ideals of K[X]. (Hint: map I — {P(x)=0| P e l} U{Q(x)#0|Q ¢ I}.)
Generalise this to 1-types over L when L is a sub field of K.
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Saturated models

Definition 5.18. A structure M is x-saturated if for every A C M of size |A| < &,
every type over A is realised in M; it is saturated if it is |M|-saturated.

Examples 5.19.

m Q%% = ACF is not No-saturated: {P(x) # 0| P € Z[X] ~ {0}} is not realised
(what ideal corresponds to this type)?

m The algebraic closure of Q( Ty, Tp,...) is saturated.

m C = ACF is saturated.

Proposition 5.20. Suppose M is k-saturated, N = M and cardinality of |N| < k.
Then there is an elementary embedding of N into M.

Proof. Enumerate elements of N := {n; : i € I} where |/| < k. Consider

Y ={o(x;): N = ¢(nj),i € I}. Since N = M then X is finitely satisfiable in M.
Since M is k-saturated then X is realised in M. Now define a function between N
and satisfaction of ¥ and show it is an elementary map. O

Exercise 5.21. Suppose M and N are two saturated structures and N = M. Then
M and N are isomorphic.
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Saturated models

Example 5.22. Let L = {<}. Recall @ < R. Then:

m Q is saturated (No-saturated);

m Q is not Nj-saturated: tp(7/Q) is not realised;

m R is not N;-saturated: {0 < x < q | g € Q>°} is not realised.

An XNj-saturated extension of Q will contain infinite points, infinitesimals, ...
It must have size > 2% (as that’s the number of types over Q).

Exercise 5.23. Suppose U is a non-principal ultrafilter on N. Assume M; for i € N
is a family of L-structures. Show [[;cy M;/U is R;-saturated.

Proposition 5.24. For all M and all infinite x, there is a k-saturated M’ = M.

Proof. We obtain the desired structure as union of an elementary chain of length
kT of structures (kT is the first cardinal bigger than k). Let My = M and in a
successor step a = 3+ 1 choose M, to be the model of Diag,,(Ms) U U, p(x,)
for all 1-types p over sets A C M such that |A| < k. In the limit ordinal

Mo :=Ugz.o M. Now let M" =], _ .+ My. Show that M’ is r-saturated (use
the fact that k™ is a regular cardinal). O
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Exercises 5.25.

Let L = Lying, K |= ACF. Let B C K be a subset. Let Ky be the subfield of K
generated by B. Consider the type tp(a/B) of an element a € K. Prove:
If a is algebraic over Kp, then there exist only finitely many a’ € K with
tp(a’/B) = tp(a/B). What ideal corresponds to tp(a/B)?
If a is not algebraic over Ky, then for any a’ that is not algebraic over Ko, we
have tp(a’/B) = tp(a/B). What ideal corresponds to tp(a/B)?
What is the unique non-realised type over K? Why?

Give a list of all 3-types of DLO.

Consider R |= DLO. Give a list of all 1-types over Q and over R in L = {<}.

Call a graph random if for every disjoint finite sets of vertices A, B, there is a
vertex v connected to every point of A but to no point of B. Let G, H be
random graphs.

Axiomatise the theory RG of random graphs (with L = {E}).

Prove that the family Z of all partial isomorphisms G — H with finite domains,
i.e., the isomorphisms between finite (induced) subgraphs of G and H, has the
back-and-forth property.

Hence RG has quantifier elimination. List all 1-types over G.
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