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Review
[Definition 1.9] Map h : M → N between two L-structures is a homomorphism if

1 h(cM) = cN for all constant symbols c ∈ L;

2 h(f M(a1, . . . , an)) = f N(h(a1), . . . , h(an)) for all function symbols f ∈ L and
a1, . . . , an ∈ M;

3 if (a1, . . . , am) ∈ RM then (h(a1), . . . , h(am)) ∈ RN for all relation symbols
R ∈ L and a1, ..., am ∈ M.

Map h is an L-embedding it is an injective homomorphism and in addition
(a1, . . . , am) ∈ RM ⇔ (h(a1), . . . , h(am)) ∈ RN for all a1, ..., am ∈ M.

Fact 4.1. An L-homomorphism h : M → N preserves atomic formulas i.e. for
every atomic formula φ

M |= φ(a1, . . . , am)⇒ N |= φ(h(a1), . . . , h(am)).

A homomorphism is an embedding if and only if it preservers negation of atomic
formulas or in other words for every atomic formula φ

M |= φ(a1, . . . , am)⇔ N |= φ(h(a1), . . . , h(am)).
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Elementary embedding and elementary substructures
Exercise 4.2. An embedding preserves formulas of the form ∃x .φ(x) where φ is a
quantifier-free formula.

Definition 4.3. Suppose M and N are two L-structures. A map h : M → N is an
elementary embedding if it preserves all the first order L-formulas i.e. for all
a1, . . . , am ∈ M

M |= φ(a1, . . . , am)⇔ N |= φ(h(a1), . . . , h(am)).

A substructure M0 of M is called an elementary substructure if the inclusion map
is elementary. Denoted by M0 ≺ M or M0 ≺L M. In this case M is called
elementary extension of M0.

Fact 4.4. Suppose M0 is an elementary substructure of M if and only if for every
L-formula φ(x), φ(M0) = φ(M) ∩Mn

0 .

Example 4.5.

In L = ∅ for infinite sets every substructure is elementary.

2Z ⊀Loag
Z, because φ(2Z) 6= φ(Z) ∩ 2Z for φ : ∃y .y + y = x .

Applications of model theory 4. Löwenheim–Skolem Theorem 2/11



Application: Hilbert’s Nullstellensatz
Proposition 4.6. If K1 ⊆ K2 are algebraically closed fields, then K1 ≺Lring

K2.

Proof. Goal: K1 |= φ(a)⇔ K2 |= φ(a) for every Lring-formula φ(x) and a ∈ K1.
By q.e., we may assume that φ(x) has no quantifiers. Then the goal is trivially
true.

Theorem 4.7 (Weak Hilbert’s Nullstellensatz, 1893). Given an algebraically
closed field K and polynomials f1, . . . , fk ∈ K [x ] with 1 /∈ I := (f1, . . . , fk), there
exists a ∈ K n such that f1(a) = . . . = fk(a) = 0.

Proof. Consider the Lring(K )-sentence σ: ∃x̄ .(f1(x) = 0 ∧ . . . ∧ fk(x̄) = 0).

Instead of proving K |= σ, it suffices to prove K ′ |= σ for any K ′ � K . . .

. . . i.e., for any algebraically closed K ′ ⊇ K .

Choose a maximal ideal M ⊇ I .

Take the field extension K ′′ := K [x ]/M ⊇ K . Set K ′ := (K ′′)alg .

Write q : K [x ]→ K ′′ for the quotient map.

Then for all i , fi (q(x1), . . . , q(xn)) = q(fi (x1, . . . , xn)) = 0 (since fi ∈ M).

Thus K ′ |= σ, namely with a = (q(x1), . . . , q(xn)).
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Model completeness

Definition 4.8. An L-theory T is called model complete if for all models of N1,N2

of T we have
N1 ⊆ N2 ⇒ N1 ≺ N2.

Exercise 4.9. All theories with q.e. are model complete. In particular, if M is a
model of a T with q.e. every substructure of M that is a model of T is
elementary.
Robinson’s Test: T is model complete if and only if every formula is, modulo T ,
equivalent to a universal formula (i.e. of the form ∀x .φ(x) where φ is q.f.)
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Tarski’s test

To check that a substructure is an elementary substructure, use the following.

Proposition 4.10 (Tarski’s test). Given L-structures M0 ⊆ M, TFAE:

1 M0 ≺ M;

2 For every L(M0)-formula φ(x), we have:
there is a ∈ M with M |= φ(a) ⇔ there is a0 ∈ M0 with M |= φ(a0).

Proof of (1) ⇒ (2). M |= φ(a) ⇒ M |= ∃x .φ(x)
(1)⇒ M0 |= ∃x .φ(x)

⇒ M0 |= φ(a0) for some a0 ∈ M0
(1)⇒ M |= φ(a0).

Proof of (2) ⇒ (1). Given σ an L(M0)-sentence, prove M0 |= σ ⇔ M |= σ.

We do an induction on the complexity of σ.

Only the case σ : ∃x .ψ(x) is non-trivial. In that case:

By definition: M |= σ ⇐⇒ there is a ∈ M s.t. M |= ψ(a);
By the assumption: ⇐⇒ there is a0 ∈ M0 s.t. M |= ψ(a0);
By induction: ⇐⇒ there is a0 ∈ M0 s.t. M0 |= ψ(a0);
⇐⇒ M0 |= σ.
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Löwenheim–Skolem theorem
Given an L-structure M and A ⊆ M. We do the following
1 Let Σ0 be the collection of all L(A)-formulas φ that M |= ∃x .φ(x).
2 Let A1 ⊇ A with witnesses for each formula in Σ0 (cardinality of A1?).
3 Repeat similar procedure for Ai ’s inductively and construct

A0 ⊆ A1 ⊆ A2 ⊆ · · · .
4 M0 :=

⋃
i∈ω Ai . Then M0 ≺ M where |M0| ≤ max{ℵ0, |L|, |A|}.

Theorem 4.11 (Löwenheim–Skolem). Let M be an infinite L-structure and
A ⊆ M. Assume κ is an infinite cardinal.

Downwards: If max{|L|,ℵ0, |A|} ≤ κ ≤ |M| , there exists A ⊆ M0 ≺ M with
|M0| = κ.

Upwards: If κ ≥ max{|L|, |M|}, then there exists M ′ � M with |M ′| = κ.

Proof of upwards.

Let L? := L(M) ∪ C , where C are κ-many new constants.

Consider the L?-theory T := Diag(M) ∪ {all constants from C are different}.
T is finitely consistent. By compactness theorem, it has a model M∗ |= T ;
in particular M∗ �L M, and all constants being different implies |M∗| ≥ κ.

Use “downwards”, to find M ′ ≺L(M) M
∗ with |M ′| = κ and get M ≺L M ′.
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Consequences of Löwenheim–Skolem

Corollary 4.12. A theory that has an infinite model has models in every
cardinality κ ≥ max{|L|,ℵ0}.

Examples 4.13.

M = R as Loring-structure: Th(M) = RCF has other models.

M = C as Lring-structure: Th(M) = ACF0 has other models.

For any infinite cardinal κ, there is K |= ACF0 with |K | = κ.

Direct proof: take Q; adjoin κ many transcendental elements; take the
algebraic closure of that. The resulting field has cardidinality κ.

One can also prove: Given M1,M2 with M1 ≡ M2, there exists M with
M1 ≺ M, M2 ≺ M.

Common application: Suppose T is a complete theory. Then one can work in
one huge M |= T which contains all the Mi |= T one might ever be interested
in as elementary substructures. (Such a huge M is called a monster model.)
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Consequences of Löwenheim–Skolem
[Exercise 2.11] If two models are isomorphic they are elementary equivalent.
The converse is not true at least for cardinality issues.
What if the structures have the same cardinality and elementary equivalent?
(Cantor) Every countable dense linear order without endpoints is isomorphic to
the rational numbers (Theorem 2.28. DLO is ℵ0-categorical).

Exercise 4.14. If two structures are Back and Forth equivalent and countable then
they are isomorphic.

[Definition 2.21] Let κ ≥ max{|L|,ℵ0}. An L-theory T is called κ-categorical if
all models of T of cardinality κ are isomorphic.

[Lecture 2 - Vaught’s test] Suppose T is a theory with no finite models and it is
κ-categorical for some infinite κ ≥ |L|. Then T is complete.

Proof. We show every two model M,N of T are elementary equivalent. Since M
and N are infinite then Th(M) and Th(N) have a model M ′ and N ′ of cardinality
κ. Note that M ′,N ′ |= T . Hence by κ-categoricity

M ≡ M ′ ∼= N ′ ≡ N.
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Historical remarks and discussion

Compactness and Upward Löwenheim–Skolem theorem are consequences of
Gödels Completeness theorem.

By a theorem by Per Lindström the first order logic is the only abstract logic
that satisfies Countable Compactness Theorem and Downward
Löwenheim–Skolem Property.

Skolem’s paradox. Every first order axiomatizing of set theory has a countable
model ... axioms that might seem to imply there are uncountable sets.

Exercise 4.15.

The ‘connectedness’ of a graph in Lgraph is not a first-order expressible.

The ‘Archimedean property’ of an ordered field in Loring is not first-order
expressible. Recall that an ordered F is Archimedean if ‘for all positive x ∈ F
there exists n ∈ N such that nx > 1’.

(Dedekind) In the language {s, 0} there a second order sentence axiomatisation
of the natural numbers that is ’categorical’.
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What is next?

Types, space of types.

Saturated models.

Omitting type theorem.
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Exercises 4.16.

1 Let L be a language and let M1 and M2 be L-structures with M1 ≡ M2.
Prove that there exists an L-structure N which has elementary substructures
N1 and N2 with Ni isomorphic to Mi , i.e., M1

∼= N1 ≺ N � N2
∼= M2.

2 Provide an example of two non-isomorphic L-structures A1 and A2 (in your
favourite language L) where both A1 and A2 are countable, A1 is a
substructure of A2 and they are elementarily equivalent.

3 Find L-structures A and B which are not elementarily equivalent and such that
A is isomorphic to a substructure of B and B is isomorphic to a substructure of
A.

4 Consider the L-structure N =< N; f > where f is a binary function symbol
with f N(a, b) := a + b for all a, b ∈ N. First for every prime number p find a
formula φp(v) such that N |= φp(n) if and only if p divides n. Suppose P and
Q are two disjoint subsets of prime numbers. Show that there is a countable
model M of Th(N) where there is m ∈ M such that all elements of P divide m
but none of the elements of Q divide m.

5 Let L = {f , c} be a language with a unary function symbol f and a constant
symbol c . Write an L-theory T stating that f is injective, that the image is
everything except for c , and that f has no cycles (f ◦ . . . ◦ f (x) 6= x). Prove
that T is uncountably categorical: for every cardinal κ > ℵ0, all models of T of
cardinality κ are isomorphic. Deduce that T is complete.
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