An Excursion Into Model Theory and Its Applications; Lecture 3

Ulla Karhumäki

University of Helsinki

LMS Online Lecture Series Fall 2020

Lecture 3 Ultraproducts and the Compactness Theorem

Filters

Let I be a set. An (ultra)filter on I is a collection of 'large' subsets of I:

Definition 3.1. A filter on I is a subset F of the powerset P(I) satisfying:

- **1** $I \in F$, $\emptyset \notin F$ (the whole set is large, the empty set is not large).
- **2** If $A \in F$ and $A \subseteq B$, then $B \in F$ (any set containing a large set is large).
- 3 If $A, B \in F$, then $A \cap B \in F$ (intersection of finitely many large sets is large).
- Both A and $A^c = I \setminus A$ cannot belong to a same filter on I.
- Filters have the finite intersection property (fip):

If
$$A_1, \ldots, A_n \in F$$
, then $\bigcap_{j=1}^n A_j \neq \emptyset$.

• Any non-empty subset $S \subseteq P(I)$ with the fip has a minimal filter containing it, the filter generated by S.

Examples 3.2.

- The trivial filter $F = \{I\}$.
- The principal filter generated by $i \in I$, i.e., $F = \{A \subseteq I : i \in A\}$.
- The Fréchet filter on infinite $I: F = \{A \subseteq I : A^c \text{ is finite}\}.$

Ultrafilters

Definition 3.3. Let U be a filter on I. Then

- **1** U is an ultrafilter if for all $A \subseteq I$ either $A \in U$ or $A^c \in U$.
- **2** U is a prime filter if for any $A, B \subseteq I$ with $A \cup B \in U$, either $A \in U$ or $B \in U$.
- **3** U is a maximal filter if every filter F including U coincides with U.

Proposition 3.4. For a filter U on I, the definitions above are equivalent.

 $1 \Rightarrow 2$: Assume $A, B \notin U$. Then $A^c, B^c \in U$ and so $(A \cup B)^c \in U$. Hence $A \cup B \notin U$. $2 \Rightarrow 3$: Assume $A \notin U$. Then $U \cup \{A\}$ does not have the fip, that is, U is maximal. $3 \Rightarrow 1$: Assume $A \notin U$. Then $U \cup \{A\}$ does not have the fip. Thus, there is $B \in U$ with $B \cap A = \emptyset$, i.e. $B \subseteq A^c$.

- Principal filters are ultrafilters. If *I* is finite, any ultrafilter on *I* is principal.
- The trivial filter and the Fréchet filter are not ultrafilters.
- So are there any non-principal ultrafilters?

Lemma 3.5 (Ultrafilter Lemma). Every filter F is contained in an ultrafilter.

Proof. Zorn's Lemma on the poset of filters on I containing F.

Corollary 3.6. Any subset $S \subseteq P(I)$ with the fip is contained in an ultrafilter.

Ultraproducts

Definition 3.7. Fix a language *L*. Let *I* be a set, *U* be an ultrafilter on *I*, and $\{M_i : i \in I\}$ be a family of *L*-structures. The ultraproduct of the M_i 's over *U* is the *L*-structure $M = \prod_{i \in I} M_i/U$ defined as follows:

The domain of M is the quotient of ∏_{i∈I} M_i by the equivalence relation ~ defined by (a_i) ~ (b_i) if they agree on a large set, i.e., if {i ∈ I : a_i = b_i} ∈ U. Denote by [(a_i)] the equivalence class of the element (a_i) w.r.t the equivalence relation ~. The structure on M is simply the quotient structure, that is:

If c is a constant symbol of L,
$$c^M = [(c^{M_i})]$$
.

If *R* is an *n*-ary relation symbol of *L*, $([(a_{i,1})], \ldots, [(a_{i,n})]) \in R^M \Leftrightarrow \{i \in I : (a_{i,1}, \ldots, a_{i,n}) \in R^{M_i}\} \in U.$

• If f is an m-ary function symbol of L,
$$f^{M}([(a_{i,1})] \dots, [(a_{i,m})]) = [(f^{M_{i}}(a_{i,1}, \dots, a_{i,m}))].$$

Exercise 3.8. Check that \sim is an equivalence relation and the interpretations of f and R are independent of the choice of representative for each equivalence class.

Definition 3.9. If all the *L*-structures M_i are equal to an *L*-structure M, then the *L*-structure $\prod_{i \in I} M_i / U = M^I / U$ an called ultrapower of the M_i 's over U.

Łos's Theorem

The ultraproduct contruction is done with the goal in mind that $\prod_{i \in I} M_i/U$ must satisfy any first-order property that holds for almost all of the structures M_i :

Theorem 3.10 (Los's Theorem). Fix a language L. Let I be a set, U an ultrafilter on I and $\{M_i : i \in I\}$ a family of L-structures. Let $\phi(\bar{x})$ be an L-formula and let $\overline{[(a_i)]}$ be a tuple of elements from the ultraproduct $\prod_{i \in I} M_i/U$. Then

$$\prod_{i\in I} M_i/U \models \phi(\overline{[(a_i)]}) \Leftrightarrow \{i \in I : M_i \models \phi(\overline{a_i})\} \in U$$

Exercise 3.11. Prove Los's Theorem by induction on formulas. What goes wrong in the proof if U is assumed to be a filter instead of an ultrafilter?

We have: if $\{M_i : i \in I\}$ is a family of models of a theory T, then $\prod_{i \in I} M_i / U \models T$. E.g., an ultraproduct of fields is a field, and ultraproduct of linear orders is a linear order, etc. Example 3.12. Let $\{\mathbb{R}_i : i \in \mathbb{N}\}$ be a family of copies of \mathbb{R} and U be a non-principal ultrafilter on \mathbb{N} . The ultrapower $\mathbb{R}^{\mathbb{N}} / U$ is a model of $\operatorname{Th}(\mathbb{R})$ which contains infinitesimal elements; consider the element $\epsilon = [(1, \frac{1}{2}, \frac{1}{3}, \ldots)] \in \mathbb{R}^{\mathbb{N}} / U$. For any integer n, $\mathbb{R}^{\mathbb{N}} / U \models \epsilon < \frac{1}{n}$, as the number of factors in which this is true is cofinite, and hence in U.

The Compactness Theorem

Theorem 3.13 (Compactness Theorem, 1st version). For any L-theory T and any L-sentence σ : if $T \vdash \sigma$ then there exists a finite subset $T_0 \subseteq T$ such that $T_0 \vdash \sigma$.

Definition 3.14. T is finitely consistent if every finite subset is consistent.

Theorem 3.15 (Compactness Theorem, 2nd version). If an L-theory T is finitely consistent, then it is consistent.

Implication 1st ⇒ 2nd version: Use σ = ⊥.
Implication 2st ⇒ 1nd version: T ⊢ σ ⇒ T ∪ {¬σ} is inconsistent ⇒ T₀ ∪ {¬σ} is inconsistent for some finite T₀ ⇒ T₀ ⊢ σ.
Corollary 3.16. If an L-theory T has no infinite model, then there is some N ∈ ℕ such that every model of T has size at most N.

Proof. Suppose there is a sequence of models $M_n \models T$ such that $|M_n| \to \infty$. Then for every finite subset T_0 of

$$T \cup \left\{ \exists x_1 \dots x_k. \bigwedge_{i \neq j}^k x_i \neq x_j \right\}$$

we have $T_0 \models M_n$ for some (all sufficiently large) $n \in \mathbb{N}$. Hence the above set is finitely consistent, so it has a model, and that model must be infinite.

A proof of the Compactness Theorem

Theorem 3.17. (Compactness Theorem) An L-theory T is consistent if and only it is finitely consistent.

Proof.

 \Rightarrow is trivial.

 $\Leftarrow:$ Let ${\mathcal T}$ be an infinite finitely consistent theory. Using ultraproducts, we prove that ${\mathcal T}$ is consistent:

- Let I be the set of all finite subsets of T.
- Now have a collection of structures $\{M_i : i \in I\}$ with $M_i \models i$ for all $i \in I$.
- Idea: take the ultraproduct of the M_i 's over some ultrafilter U on I so that $\prod_{i \in I} M_i / U$ is a model of T.
- By Łos's Theorem, it is enough to find an ultrafilter U s.t for all $\sigma \in T$, $\{i : M_i \models \sigma\} \in U$.
- $\{i: M_i \models \sigma\} \supseteq \{i: \sigma \in i\}, \text{ since } M_i \models i.$
- Let $A_{\sigma} = \{i : \sigma \in i\}$. Now $\{A_{\sigma} : \sigma \in T\}$ has the fip as $\bigcap_{j=0}^{n} A_{\sigma_j}$ contains $\{\sigma_0, \ldots, \sigma_n\}$.

• We may now pick U so that $A_{\sigma} \in U$ for all $\sigma \in T$.

An application

We've seen that one can transfer sentences between algebraically closed fields of the same characteristic. Next we see that one can also change the characteristic: *Theorem 3.18. Let* σ *be any* L_{ring} *-sentence. Then TFAE:*

1 $\mathbb{C} \models \sigma$.

- **2** If K is an algebraically closed field of characteristic 0, then $K \models \sigma$.
- 3 There exists an integer n, such that if p is a prime number > n, then $\mathbb{F}_p^{alg} \models \sigma$
- 4 There exists an integer n, such that if p is a prime number > n and K is an algebraically closed field of characteristic p, then $K \models \sigma$.
- Proof. (1) \Leftrightarrow (2) and (3) \Leftrightarrow (4) are clear at this point.
- Assume (2): $ACF_0 = ACF \cup \{p \neq 0 : p \text{ a prime}\} \vdash \sigma$. Compactness: there are finitely many prime numbers p_1, \ldots, p_m s.t. $ACF \cup \{p_1 \neq 0, \ldots, p_m \neq 0\} \vdash \sigma$. Take $n > \sup\{p_1, \ldots, p_m\}$. We have (2) \Rightarrow (4).
- Assume (4) and let U be a non-principal ultrafilter on the set P of primes. For each prime p, choose an algebraically closed field K_p of characteristic p. Then $\{p \in P : K_p \models \sigma\} \in U$. Therefore $\prod_{p \in P} K_p/U \models \sigma$. For each p, the set $\{q \in P : q \neq p\}$ is also in the ultrafilter. By Łos's Theorem, $\prod_{p \in P} K_p/U$ is an algebraically closed field of characteristic 0. We have (4) \Rightarrow (2).

Ax's Theorem

Theorem 3.19 (Ax's Theorem). Let $f : \mathbb{C}^n \longrightarrow \mathbb{C}^n$ be a polynomial map. If f is injective, then it is surjective.

Proof.

- Theorem 3.19 can be captured using L_{ring} -sentences $\sigma_{n,d}$ which holds in a field F iff every injective polynomial map $F^n \to F^n$ of degree d is surjective.
- Thus, by Theorem 3.18 it suffices to show that for large enough p, any injective polynomial map $f : (\mathbb{F}_p^{alg})^n \to (\mathbb{F}_p^{alg})^n$ is surjective.
- We denote $K = \mathbb{F}_p^{alg}$. Let $\bar{x} \in K^n$. We want to find \bar{y} such that $f(\bar{y}) = \bar{x}$.
- Choose $\mathbb{F}_q \subset K$ which contains x_1, \ldots, x_n and all coefficients in f.
- Since $f : \mathbb{F}_q^n \to \mathbb{F}_q^n$ is injective it must be surjective as \mathbb{F}_q is finite. Hence there is $\bar{y} \in \mathbb{F}_q^n \subseteq K^n$ with $f(\bar{y}) = \bar{x}$.

Finally, a historical remark

- While ultraproducts allow us to give a short and algebraic proof of the Compactness Theorem, this is not at all the original proof!
- Let T be an L-theory and σ an L-sentence. A proof of σ from T is a finite sequence of L-formulas φ₁,..., φ_n such that φ_n = σ and, for all i = 1,..., n, φ_i ∈ T or φ_i follows from φ₁,..., φ_{i-1} by logical rules. Then T ⊢ σ.

Theorem 3.20 (Gödels Completeness Theorem). Let T be an L-theory and σ an L-sentence. Then $T \models \sigma$ if and only if $T \vdash \sigma$.

As proofs are finite, as a corollary of Gödels Completeness Theorem, one gets the Compactness Theorem.

Exercises 3.21. Prove that an ultrafilter U on infinite I is non-principal if and only if it contains the Fréchet filter on I.

- **1** Let U be the principal ultrafilter on I genereted by $j \in I$. Prove that $\prod_{i \in I} M_i / F \cong M_j$.
- Use the ultraproduct construction to build a field of characteristic 0 which has exactly one algebraic extension of each degree.
- Let $\phi(\overline{x}, \overline{y})$ be an *L*-formula and *T* be a complete *L*-theory. Prove that either (a) there is $N \in \mathbb{N}$ such that $\#\phi(M, \overline{b}) \leq N$ for every $M \models T$ and $\overline{b} \in M^{|\overline{y}|}$, or (b) there is $M \models T$ and $\overline{b} \in M^{|\overline{y}|}$ and $\phi(M, \overline{b})$ infinite.
- 4 Let T be a complete L_{graph}-theory. Prove that if every model of T is connected, then every model has the same finite diameter (maximal distance between any two vertices).
- S Assume the 4-colour theorem: every finite planar graph is 4-colourable. Using compactness, prove that every *infinite* planar graph is 4-colourable. Guide:
 - 1 Let $L' = L_{\text{graph}} \cup \{C_1, C_2, C_3, C_4\}$, with C_1, \ldots, C_4 unary relation symbols.
 - 2 Write the L'-theory T_C that says that C_1, \ldots, C_4 form a *partition* of the domain.
 - Let $\text{Diag}(G) := \text{Th}_{L(G)}(G)$ (the atomic diagram of G). Prove that G is 4-colourable if and only if $\text{Diag}(G) \cup T_C$ is consistent. Then use compactness!

6 Prove that there is an L_{oring} -structure $\mathbb{Z}^* \equiv \mathbb{Z}$ containing an element $a \in \mathbb{Z}^*$ divisible by every $n \in \mathbb{Z} \setminus \{0\}$. Hint: use $L' = L_{\text{oring}} \cup \{c\}$ where c is a new constant symbol. Write an L'-theory expressing that c is divisible by every $n \in \mathbb{Z} \setminus \{0\}$.

Exercises 3.21. \blacksquare Prove that an ultrafilter U on infinite I is non-principal if and only if it contains the Fréchet filter on I.

- **1** Let U be the principal ultrafilter on I genereted by $j \in I$. Prove that $\prod_{i \in I} M_i / F \cong M_j$.
- 2 Use the ultraproduct construction to build a field of characteristic 0 which has exactly one algebraic extension of each degree.
- **3** Let $\phi(\overline{x}, \overline{y})$ be an *L*-formula and *T* be a complete *L*-theory. Prove that either (a) there is $N \in \mathbb{N}$ such that $\#\phi(M, \overline{b}) \leq N$ for every $M \models T$ and $\overline{b} \in M^{|\overline{y}|}$, or (b) there is $M \models T$ and $\overline{b} \in M^{|\overline{y}|}$ and $\phi(M, \overline{b})$ infinite.
- 4 Let T be a complete L_{graph}-theory. Prove that if every model of T is connected, then every model has the same finite diameter (maximal distance between any two vertices).
- **S** Assume the 4-colour theorem: every finite planar graph is 4-colourable. Using compactness, prove that every *infinite* planar graph is 4-colourable. Guide:
 - Let $L' = L_{\text{graph}} \cup \{C_1, C_2, C_3, C_4\}$, with C_1, \ldots, C_4 unary relation symbols.
 - **2** Write the L'-theory T_C that says that C_1, \ldots, C_4 form a *partition* of the domain.
 - **B** Let $\text{Diag}(G) := \text{Th}_{L(G)}(G)$ (the atomic diagram of G). Prove that G is 4-colourable if and only if $\text{Diag}(G) \cup T_C$ is consistent. Then use compactness!
- **6** Prove that there is an L_{oring} -structure $\mathbb{Z}^* \equiv \mathbb{Z}$ containing an element $a \in \mathbb{Z}^*$ divisible by every $n \in \mathbb{Z} \setminus \{0\}$. Hint: use $L' = L_{\text{oring}} \cup \{c\}$ where c is a new constant symbol. Write an L'-theory expressing that c is divisible by every $n \in \mathbb{Z} \setminus \{0\}$.