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Filters
Let I be a set. An (ultra)filter on I is a collection of ‘large’ subsets of I :

Definition 3.1. A filter on I is a subset F of the powerset P(I ) satisfying:

1 I ∈ F , ∅ /∈ F (the whole set is large, the empty set is not large).

2 If A ∈ F and A ⊆ B, then B ∈ F (any set containing a large set is large).

3 If A,B ∈ F , then A ∩ B ∈ F (intersection of finitely many large sets is large).

Both A and Ac = I \ A cannot belong to a same filter on I .

Filters have the finite intersection property (fip):

If A1, . . . ,An ∈ F , then

n⋂
j=1

Aj 6= ∅.

Any non-empty subset S ⊆ P(I ) with the fip has a minimal filter containing it, the
filter generated by S .

Examples 3.2.

The trivial filter F = {I}.
The principal filter generated by i ∈ I , i.e., F = {A ⊆ I : i ∈ A}.
The Fréchet filter on infinite I : F = {A ⊆ I : Ac is finite}.
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Ultrafilters
Definition 3.3. Let U be a filter on I . Then

1 U is an ultrafilter if for all A ⊆ I either A ∈ U or Ac ∈ U.

2 U is a prime filter if for any A,B ⊆ I with A ∪ B ∈ U, either A ∈ U or B ∈ U.

3 U is a maximal filter if every filter F including U coincides with U.

Proposition 3.4. For a filter U on I , the definitions above are equivalent.

1⇒ 2 : Assume A,B /∈ U. Then Ac ,Bc ∈ U and so (A ∪ B)c ∈ U. Hence A ∪ B /∈ U.
2⇒ 3 : Assume A /∈ U. Then U ∪ {A} does not have the fip, that is, U is maximal.
3⇒ 1 : Assume A /∈ U. Then U ∪ {A} does not have the fip. Thus, there is B ∈ U
with B ∩ A = ∅, i.e. B ⊆ Ac .

Principal filters are ultrafilters. If I is finite, any ultrafilter on I is principal.

The trivial filter and the Fréchet filter are not ultrafilters.

So are there any non-principal ultrafilters?

Lemma 3.5 (Ultrafilter Lemma). Every filter F is contained in an ultrafilter.

Proof. Zorn’s Lemma on the poset of filters on I containing F .

Corollary 3.6. Any subset S ⊆ P(I ) with the fip is contained in an ultrafilter.
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Ultraproducts
Definition 3.7. Fix a language L. Let I be a set, U be an ultrafilter on I , and
{Mi : i ∈ I} be a family of L-structures. The ultraproduct of the Mi ’s over U is
the L-structure M =

∏
i∈I Mi/U defined as follows:

The domain of M is the quotient of
∏

i∈I Mi by the equivalence relation ∼
defined by (ai ) ∼ (bi ) if they agree on a large set, i.e., if {i ∈ I : ai = bi} ∈ U.

Denote by [(ai )] the equivalence class of the element (ai ) w.r.t the equivalence
relation ∼. The structure on M is simply the quotient structure, that is:

If c is a constant symbol of L, cM = [(cMi )].

If R is an n-ary relation symbol of L,
([(ai,1)], . . . , [(ai,n)]) ∈ RM ⇔ {i ∈ I : (ai,1, . . . , ai,n) ∈ RMi} ∈ U.

If f is an m-ary function symbol of L,
f M([(ai,1)] . . . , [(ai,m)]) = [(f Mi (ai,1, . . . , ai,m))].

Exercise 3.8. Check that ∼ is an equivalence relation and the interpretations of f
and R are independent of the choice of representative for each equivalence class.

Definition 3.9. If all the L-structures Mi are equal to an L-structure M, then the
L-structure

∏
i∈I Mi/U = M I/U an called ultrapower of the Mi ’s over U.
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 Los’s Theorem

The ultraproduct contruction is done with the goal in mind that
∏

i∈I Mi/U must satisfy
any first-order property that holds for almost all of the structures Mi :

Theorem 3.10 ( Los’s Theorem). Fix a language L. Let I be a set, U an ultrafilter on I
and {Mi : i ∈ I} a family of L-structures. Let φ(x̄) be an L-formula and let [(ai )] be a
tuple of elements from the ultraproduct

∏
i∈I Mi/U. Then∏

i∈I

Mi/U |= φ([(ai )])⇔ {i ∈ I : Mi |= φ(ai )} ∈ U

.

Exercise 3.11. Prove  Los’s Theorem by induction on formulas. What goes wrong in the
proof if U is assumed to be a filter instead of an ultrafilter?

We have: if {Mi : i ∈ I} is a family of models of a theory T , then
∏

i∈I Mi/U |= T . E.g,
an ultraproduct of fields is a field, and ultraproduct of linear orders is a linear order, etc.

Example 3.12. Let {Ri : i ∈ N} be a family of copies of R and U be a non-principal
ultrafilter on N. The ultrapower RN/U is a model of Th(R) which contains infinitesimal
elements; consider the element ε = [(1, 1

2
, 1
3
, . . .)] ∈ RN/U. For any integer n,

RN/U |= ε < 1
n

, as the number of factors in which this is true is cofinite, and hence in U.
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The Compactness Theorem
Theorem 3.13 (Compactness Theorem, 1st version). For any L-theory T and any
L-sentence σ: if T ` σ then there exists a finite subset T0 ⊆ T such that T0 ` σ.

Definition 3.14. T is finitely consistent if every finite subset is consistent.

Theorem 3.15 (Compactness Theorem, 2nd version). If an L-theory T is finitely
consistent, then it is consistent.

Implication 1st ⇒ 2nd version: Use σ = ⊥.
Implication 2st ⇒ 1nd version: T ` σ ⇒ T ∪ {¬σ} is inconsistent
⇒ T0 ∪ {¬σ} is inconsistent for some finite T0 ⇒ T0 ` σ.

Corollary 3.16. If an L-theory T has no infinite model, then there is some N ∈ N
such that every model of T has size at most N.

Proof. Suppose there is a sequence of models Mn |= T such that |Mn| → ∞.
Then for every finite subset T0 of

T ∪
{
∃x1 . . . xk .

∧k
i 6=j xi 6= xj

}
we have T0 |= Mn for some (all sufficiently large) n ∈ N. Hence the above set is
finitely consistent, so it has a model, and that model must be infinite.
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A proof of the Compactness Theorem
Theorem 3.17. (Compactness Theorem) An L-theory T is consistent if and only
it is finitely consistent.

Proof.
⇒ is trivial.
⇐: Let T be an infinite finitely consistent theory. Using ultraproducts, we prove
that T is consistent:

Let I be the set of all finite subsets of T .

Now have a collection of structures {Mi : i ∈ I} with Mi |= i for all i ∈ I .

Idea: take the ultraproduct of the Mi ’s over some ultrafilter U on I so that∏
i∈I Mi/U is a model of T .

By  Los’s Theorem, it is enough to find an ultrafilter U s.t for all σ ∈ T ,
{i : Mi |= σ} ∈ U.

{i : Mi |= σ} ⊇ {i : σ ∈ i}, since Mi |= i .

Let Aσ = {i : σ ∈ i}. Now {Aσ : σ ∈ T} has the fip as
⋂n

j=0 Aσj contains
{σ0, . . . , σn}.
We may now pick U so that Aσ ∈ U for all σ ∈ T .

Applications of model theory 3. Ultraproducts and the Compactness Theorem 6/10



An application
We’ve seen that one can transfer sentences between algebraically closed fields of
the same characteristic. Next we see that one can also change the characteristic:

Theorem 3.18. Let σ be any Lring-sentence. Then TFAE:

1 C |= σ.

2 If K is an algebraically closed field of characteristic 0, then K |= σ.

3 There exists an integer n, such that if p is a prime number > n, then Falg
p |= σ

4 There exists an integer n, such that if p is a prime number > n and K is an
algebraically closed field of characteristic p, then K |= σ.

Proof. (1) ⇔ (2) and (3) ⇔ (4) are clear at this point.

Assume (2): ACF0 = ACF∪{p 6= 0 : p a prime} ` σ. Compactness: there are
finitely many prime numbers p1, . . . , pm s.t. ACF∪{p1 6= 0, . . . , pm 6= 0} ` σ.
Take n > sup{p1, . . . , pm}. We have (2) ⇒ (4).

Assume (4) and let U be a non-principal ultrafilter on the set P of primes. For
each prime p, choose an algebraically closed field Kp of characteristic p. Then
{p ∈ P : Kp |= σ} ∈ U. Therefore

∏
p∈P Kp/U |= σ. For each p, the set

{q ∈ P : q 6= p} is also in the ultrafilter. By  Los’s Theorem,
∏

p∈P Kp/U is an
algebraically closed field of characteristic 0. We have (4) ⇒ (2).
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Ax’s Theorem

Theorem 3.19 (Ax’s Theorem). Let f : Cn −→ Cn be a polynomial map. If f is
injective, then it is surjective.

Proof.

Theorem 3.19 can be captured using Lring-sentences σn,d which holds in a field
F iff every injective polynomial map F n → F n of degree d is surjective.

Thus, by Theorem 3.18 it suffices to show that for large enough p, any
injective polynomial map f : (Falg

p )n → (Falg
p )n is surjective.

We denote K = Falg
p . Let x̄ ∈ K n. We want to find ȳ such that f (ȳ) = x̄ .

Choose Fq ⊂ K which contains x1, . . . , xn and all coefficients in f .

Since f : Fn
q → Fn

q is injective it must be surjective as Fq is finite. Hence there
is ȳ ∈ Fn

q ⊆ K n with f (ȳ) = x̄ .
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Finally, a historical remark

While ultraproducts allow us to give a short and algebraic proof of the
Compactness Theorem, this is not at all the original proof!

Let T be an L-theory and σ an L-sentence. A proof of σ from T is a finite
sequence of L-formulas φ1, . . . , φn such that φn = σ and, for all i = 1, . . . , n,
φi ∈ Tor φi follows from φ1, . . . , φi−1 by logical rules. Then T ` σ.

Theorem 3.20 (Gödels Completeness Theorem). Let T be an L-theory and σ an
L-sentence. Then T |= σ if and only if T ` σ.

As proofs are finite, as a corollary of Gödels Completeness Theorem, one gets the
Compactness Theorem.
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Exercises 3.21. Prove that an ultrafilter U on infinite I is non-principal if and only if
it contains the Fréchet filter on I .

1 Let U be the principal ultrafilter on I genereted by j ∈ I . Prove that
∏

i∈I Mi/F ∼= Mj .

2 Use the ultraproduct construction to build a field of characteristic 0 which has exactly
one algebraic extension of each degree.

3 Let φ(x , y) be an L-formula and T be a complete L-theory. Prove that either (a)
there is N ∈ N such that #φ(M, b) ≤ N for every M |= T and b ∈ M |y|, or (b) there
is M |= T and b ∈ M |y| and φ(M, b) infinite.

4 Let T be a complete Lgraph-theory. Prove that if every model of T is connected, then
every model has the same finite diameter (maximal distance between any two
vertices).

5 Assume the 4-colour theorem: every finite planar graph is 4-colourable. Using
compactness, prove that every infinite planar graph is 4-colourable. Guide:

1 Let L′ = Lgraph ∪ {C1,C2,C3,C4}, with C1, . . . , C4 unary relation symbols.
2 Write the L′-theory TC that says that C1, . . . , C4 form a partition of the domain.
3 Let Diag(G) := ThL(G)(G) (the atomic diagram of G). Prove that G is

4-colourable if and only if Diag(G) ∪ TC is consistent. Then use compactness!

6 Prove that there is an Loring-structure Z∗ ≡ Z containing an element a ∈ Z∗ divisible
by every n ∈ Z r {0}. Hint: use L′ = Loring ∪ {c} where c is a new constant symbol.
Write an L′-theory expressing that c is divisible by every n ∈ Z r {0}.
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