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Theories and quantifier elimination



Theories
We usually don’t just want L-structures for the appropriate L, as interpretations
could be anything, but we also want to enforce some minimum properties.

Definition 2.1. Fix a language L.

An L-theory T is a set of L-sentences (usually called axioms).

A model of a theory T is an L-structure M such that M |= σ for all σ ∈ T .

Example 2.2.

The theory of abelian groups is the Lag-theory consisting of the axioms for
abelian groups: AG = {
∀x , y , z .(x + y) + z = x + (y + z) (associativity)
∀x , y .x + y = y + x (commutativity)
∀x .x + 0 = x (neutral element)
∀x .x + (−x) = 0 (inverse element)
}.
Thus: An Lag-structure is a model of AG iff it is an abelian group.

Similarly, one defines the Lring-theory of rings, the Lring-theory of fields,
Lord-theory of ordered sets, the Loring-theory of ordered rings etc.
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More examples of theories

Examples 2.3.

The theory ACF of algebraically closed fields consists of:

the field axioms
“Every non-constant polynomial has a 0.”
Q: Can this be expressed by an Lring-sentence?
A: Not by one, but by many: For each n ≥ 1, take the axiom:
∀a0 . . . an−1.∃x .xn + an−1x

n−1 + . . .+ a1x + a0 = 0.

For a prime p, the theory of algebraically closed fields of characteristic p is:
ACFp = ACF∪{1 + 1 + . . .+ 1︸ ︷︷ ︸

p

= 0}

The theory of algebraically closed fields of characteristic 0 is:
ACF0 = ACF∪{1 + 1 6= 0, 1 + 1 + 1 6= 0, 1 + 1 + 1 + 1 + 1 6= 0, etc.}
What about axiomatising R (in Loring)?

R is the unique ordered field such that each bounded subset has a supremum.
Thus need to say: ∀X ⊆ R.X bounded→ X has a supremum.
Not an Loring-formula: can only quantify over elements, not over subsets!
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Consistency, equivalence, implication
Definition 2.4. Fix a language L.

An L-theory T is consistent if (non-empty) models of T exist.

Two L-theories are equivalent if they have the same models.

An L-sentence σ follows from, or is implied by, an L-theory T if σ holds in
every model of T . In that case, we write T ` σ.

Examples 2.5.

All previous examples (AG,ACF,ACF0,ACFp, . . .) are consistent. The
Lag -theory {0 6= 0} is not inconsistent.

Let AG′ be AG with ∀x .0 + x = x in place of ∀x .x + 0 = x . The models are in
both cases all abelian groups, hence AG and AG′ are equivalent.

In every algebraically closed field, any monic polynomial of degree 2 has exactly
two solutions. Thus: ACF ` ∀a1a0.∃=2x .x2 + a1x + a0 = 0.

Exercise 2.6. Prove that TFAE:

T is inconsistent.

T ` ⊥. (Recall: ⊥ is the always-false sentence.)

There exists a sentence σ s.t. T ` σ and T ` ¬σ.
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Complete theories
Definition 2.7. A consistent L-theory T is complete if for every L-sentence σ,
either T ` σ or T ` ¬σ.

Example 2.8. Easiest way to construct a complete theory: consider the theory of
a given L-structure M Th(M) := {σ L-sentence : M |= σ} consisting all
L-sentences true in the L-structure M.

Examples 2.9.

ACF0 and ACFp for every prime p (in Lring), proof later.

The theory DLO of dense linear orders without endpoints (in Lord), proof later.

The theory RCF of real closed fields (in Loring).

The theory VSK of infinite K -vector spaces (in LK -vect).

The theory RG of the random graph (in Lgraph).

So far, we added more and more axioms to the theory of fields: algebraically
closed fields (ACF), and then algebraically closed fields of fixed characteristic
(ACF0, ACFp).

Example 2.9 tells us that it would have been impossible to go further: for any
Lring-sentence σ, we have ACF0 ` σ or ACF0 ` ¬σ. Thus, ACF0 ∪{σ} is either
equivalent to ACF0 or it is inconsistent.
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Elementary equivalence & substructures
“A theory T is complete” means: for any two models M1 and M2 of T , we
have Th(M1) = Th(M2). When this happens, we say:

Definition 2.10. Two L-structures M1 and M2 are elementarily equivalent if
Th(M1) = Th(M2). This is denoted by M1 ≡L M2 or just M1 ≡ M2.

Exercise 2.11. Prove that if two L-structures M1 and M2 are isomorphic then
they are elementarily equivalent. The converse does NOT hold!

Examples 2.12.

Any two algebraically closed fields of the same characteristic are elementary
equivalent.

Any two infinite K -vector spaces are elementary equivalent (so if K is infinite,
K 2 ≡ K 3!).

Definition 2.13. An L-embedding e : M → N between two L-structures M and N
is an elementary embedding if it is an inclusion map such that

M |= φ(a1, . . . , an)⇔ N |= φ(e(a1), . . . , e(an)) for any φ(x̄) and ā ∈ Mn.

If M is a substructure of N and an e : M → N is an elementary embedding, then
M is called an elementary substructure of N. In this case we write M � N.
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A strategy for completeness: Quantifier Elimination

How can we prove that ACF0 is complete? We need to understand everything
that can be expressed by an Lring-sentence. Hence, all definable sets.

Philosophy: quantifiers are the source of all problems.
But do we really need quantifiers?

Definition 2.14. Fix an L-theory T .

Two formulas φ(x), ψ(x) are equivalent modulo T if for every M |= T , we
have φ(M) = ψ(M) (equivalently, if T ` ∀x .φ(x)↔ ψ(x)).

T has quantifier elimination (q.e.) if every L-formula is equivalent modulo T
to a quantifier-free L-formula (i.e., a formula without ∀, ∃).

Exercise 2.15. For every L-structure M, we have:

φ(x), ψ(x) are equivalent modulo Th(M) iff φ(M) = ψ(M).

Th(M) has q.e. ⇐⇒ every L-definable set in M can be defined by a
quantifier-free formula.
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A strategy for quantifier elimination

Fix a theory T . How can one prove that T has q.e.?

Proposition 2.16. T has q.e. ⇐⇒ every formula of the form ∃y .ψ(x , y), where ψ
is quantifier free, is equivalent modulo T to a quantifier free formula.

Proof.

Let an arbitrary L-formula φ be given. Our goal is to get rid of quantifiers in φ.

Get rid of all “∀” using that ∀y .φ(x , y) is equivalent to ¬∃y .¬φ(x , y).

By induction on the length of φ, we may replace all subformulas ψ with
equivalent quantifier free ones.

We consider the various possibilies for φ from the definition of formulas:

if φ is atomic, it is quantifier-free.
if φ is ψ1 ∨ ψ2, the sub-formulas ψ1, ψ2 are quantifier free, so φ is, too.
likewise for ψ1 ∧ ψ2, ¬ψ1;
if φ(x) is ∃y .ψ(x , y), the subformula ψ is quantifier free, so φ is equivalent to a
quantifier free formula by the assumption.
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Q.e. in ACF; completeness of ACF0, ACFp
Let K be an algebraically closed field.

Definition 2.17. A subset of D ⊆ K n is constructible if it is a boolean combination
of zero set of polynomials, i.e., if it definable with a quantifier free formula.

Theorem 2.18 (Chevalley). The projection K n+1 → K n of a constructible set is
constructible.

Corollary 2.19. ACF has quantifier elimination.

Proof. If D ⊆ K n+1 is defined by φ(x , y), then its projection to K n is defined by
∃yφ(x , y). By Chevalley’s theorem and Proposition 2.16, ACF has q.e.

Corollary 2.20. ACF0 and ACFp are complete.

Proof.

Let σ be any L-sentence; by q.e we may assume that σ is quantifier free.

Thus, σ consists of 0, 1,+,−, ·,=,>,⊥,∨,∧,¬. (No variables!)

In ACF, each term is equal to a sum 1 + . . .+ 1.

The characteristic of K determines when such terms are equal or different; this
decides whether σ is true or false.
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Vaught’s test and the back-and-forth method
We next see another strategy to prove that a theory is complete.

Definition 2.21. Let κ be an infinite cardinal and T be a theory with models of
size κ. T is called κ-categorical if it has, up to isomorphism, a unique model of
cardinality κ.

Theorem 2.22 (Vaught’s test). Let T be a consistent L-theory with no finite
models which is κ-categorical for some infinite cardinal κ > |L|. Then T is
complete.

Exercise 2.23. Once you have seen the Löwenheim-Skolem Theorems (Lecture 4),
use them to prove Vaught’s test.

Showing κ-categoricity is often done using a technique called back-and-forth.

Definition 2.24. A partial isomorphism of two L-structures M and N is an
isomorphism f : M0 → N0 between two substructures M0 ⊆L M, N0 ⊆L N.

Definition 2.25. Let I be a set of partial isomorphisms of M and N. We say that
I has the back-and-forth property if for all f ∈ I:

forth: for all m ∈ M, there is f ⊆ f ′ ∈ I with m ∈ dom(f ′);

back: for all n ∈ N, there is f ⊆ f ′ ∈ I with n ∈ range(f ′).
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Completeness of DLO
Definition 2.26. DLO is the Lord-theory of dense linear orders without endpoints.

dense: for all a < b there exists c in between, i.e. a < c < b.

linear: for all a, b either a < b, a = b or b < a.

without endpoints: there are no minimal and no maximal elements.

Example 2.27. Q |= DLO, R |= DLO.

Theorem 2.28. The theory DLO is ℵ0-categorical and complete.

Proof. Let A,B |= DLO be countable with one-to-one enumerations a0, a1, . . .
and b0, b1 . . .. We build a sequence f0 ⊆ f1 ⊆ . . . of partial isomorphisms
fi : Ai → Bi for Ai ⊂ A and Bi ⊂ B finite s.t. f =

⋃
fi is an isomorphism

between A =
⋃
Ai and B =

⋃
Bi .

As DLO has no finite models, completeness follows from Theorem 2.22.
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Exercises 2.29. Let L be any language. Specify an L-theory T such that the models
of T are exactly the infinite L-structures.

1 Let T be a consistent L-theory. Prove that the following are equivalent:

1 T is complete;
2 any two models of T are elementarily equivalent;
3 T is equivalent to Th(M) for some model M of T .

2 An ordered field R is called real closed if every positive element of R has a square
root and every odd-degree polynomial has a zero. We denote the Loring-theory of real
closed fields by RCF.

Axiomatise real closed fields with Loring-sentences.
By a result of Tarski, RCF has quantifier elimination in Loring. Therefore, (as for
ACF) one deduces that RCF is complete in Loring. However, RCF does not
eliminate quantifiers in Lring: what are the quantifier free Lring-definable sets?

3 Prove that the Lag-theory AG of abelian groups is not complete.

4 Write the field axiom “every non-zero element is invertible” in Lring.

5 Find quantifier free formulas equivalent to the ones below:

1 φ(x , y) : ∃y .x · y = 1 in C seen as an Lring-structure;
2 φ(x , y) : ∃x .y = x · x in R seen as an Loring-structure;
3 φ(a, b) : ∃x .x2 + ax + b = 0 in R seen as an Loring-structure.

6 Let L = {S}, where S is a unary function, and let Z be an L-structure with S
interpreted as the function a 7→ a + 1. Prove that the L-theory Th(Z) has q.e.
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