An Excursion Into Model Theory and Its Applications; Lecture 2

Ulla Karhumäki

University of Helsinki

LMS online course Fall 2020

Lecture 2 Theories and quantifier elimination

Theories

• We usually don't just want *L*-structures for the appropriate *L*, as interpretations could be anything, but we also want to enforce some minimum properties.

Definition 2.1. Fix a language L.

- An *L*-theory *T* is a set of *L*-sentences (usually called axioms).
- A model of a theory T is an L-structure M such that $M \models \sigma$ for all $\sigma \in T$.

Example 2.2.

More examples of theories

Examples 2.3.

The theory ACF of algebraically closed fields consists of:

the field axioms

"Every non-constant polynomial has a 0."

Q: Can this be expressed by an $L_{\rm ring}$ -sentence?

A: Not by one, but by many: For each $n \ge 1$, take the axiom:

 $\forall a_0 \dots a_{n-1} \exists x. x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0.$

• For a prime *p*, the theory of algebraically closed fields of characteristic *p* is: $ACF_p = ACF \cup \{\underbrace{1+1+\ldots+1}_{p=0}\}$

■ The theory of algebraically closed fields of characteristic 0 is: $\begin{array}{l} \mathsf{ACF}_0 = \mathsf{ACF} \cup \{1+1 \neq 0, 1+1+1 \neq 0, 1+1+1+1 \neq 0, \ \mathsf{etc.}\} \end{array}$

• What about axiomatising \mathbb{R} (in L_{oring})?

 \blacksquare $\mathbb R$ is the unique ordered field such that each bounded subset has a supremum.

- Thus need to say: $\forall X \subseteq \mathbb{R}.X$ bounded $\rightarrow X$ has a supremum.
- Not an *L*_{oring}-formula: can only quantify over elements, not over subsets!

Consistency, equivalence, implication Definition 2.4. Fix a language *L*.

- An *L*-theory *T* is consistent if (non-empty) models of *T* exist.
- Two *L*-theories are equivalent if they have the same models.
- An *L*-sentence σ follows from, or is implied by, an *L*-theory *T* if σ holds in every model of *T*. In that case, we write $T \vdash \sigma$.

Examples 2.5.

- All previous examples (AG, ACF, ACF₀, ACF_p, ...) are consistent. The L_{ag} -theory {0 ≠ 0} is not inconsistent.
- Let AG' be AG with $\forall x.0 + x = x$ in place of $\forall x.x + 0 = x$. The models are in both cases all abelian groups, hence AG and AG' are equivalent.
- In every algebraically closed field, any monic polynomial of degree 2 has exactly two solutions. Thus: ACF ⊢ ∀a₁a₀.∃⁼²x.x² + a₁x + a₀ = 0.

Exercise 2.6. Prove that TFAE:

- T is inconsistent.
- $T \vdash \bot$. (Recall: \bot is the always-false sentence.)
- There exists a sentence σ s.t. $T \vdash \sigma$ and $T \vdash \neg \sigma$.

Complete theories

Definition 2.7. A consistent *L*-theory *T* is complete if for every *L*-sentence σ , either $T \vdash \sigma$ or $T \vdash \neg \sigma$.

Example 2.8. Easiest way to construct a complete theory: consider the theory of a given *L*-structure M Th $(M) := \{\sigma L$ -sentence : $M \models \sigma\}$ consisting all *L*-sentences true in the *L*-structure M.

Examples 2.9.

- ACF₀ and ACF_p for every prime p (in L_{ring}), proof later.
- The theory DLO of dense linear orders without endpoints (in *L*_{ord}), proof later.
- The theory RCF of *real closed fields* (in *L*_{oring}).
- The theory VS_K of infinite K-vector spaces (in L_{K-vect}).

• The theory RG of the random graph (in L_{graph}).

- So far, we added more and more axioms to the theory of fields: algebraically closed fields (ACF), and then algebraically closed fields of fixed characteristic (ACF₀, ACF_p).
 - Example 2.9 tells us that it would have been impossible to go further: for any L_{ring} -sentence σ , we have ACF₀ $\vdash \sigma$ or ACF₀ $\vdash \neg \sigma$. Thus, ACF₀ $\cup \{\sigma\}$ is either equivalent to ACF₀ or it is inconsistent.

Applications of model theory

2. Theories and quantifier elimination

Elementary equivalence & substructures

• "A theory T is complete" means: for any two models M_1 and M_2 of T, we have $Th(M_1) = Th(M_2)$. When this happens, we say:

Definition 2.10. Two *L*-structures M_1 and M_2 are elementarily equivalent if $Th(M_1) = Th(M_2)$. This is denoted by $M_1 \equiv_L M_2$ or just $M_1 \equiv M_2$.

Exercise 2.11. Prove that if two *L*-structures M_1 and M_2 are isomorphic then they are elementarily equivalent. The converse does NOT hold!

Examples 2.12.

- Any two algebraically closed fields of the same characteristic are elementary equivalent.
- Any two infinite K-vector spaces are elementary equivalent (so if K is infinite, $K^2 \equiv K^3$!).

Definition 2.13. An *L*-embedding $e: M \to N$ between two *L*-structures *M* and *N* is an elementary embedding if it is an inclusion map such that $M \models \phi(a_1, \ldots, a_n) \Leftrightarrow N \models \phi(e(a_1), \ldots, e(a_n))$ for any $\phi(\bar{x})$ and $\bar{a} \in M^n$. If *M* is a substructure of *N* and an $e: M \to N$ is an elementary embedding, then

M is called an elementary substructure of *N*. In this case we write $M \leq N$.

A strategy for completeness: Quantifier Elimination

- How can we prove that ACF_0 is complete? We need to understand *everything* that can be expressed by an L_{ring} -sentence. Hence, *all* definable sets.
- Philosophy: quantifiers are the source of all problems. But do we really need quantifiers?

Definition 2.14. Fix an L-theory T.

- Two formulas $\phi(\overline{x})$, $\psi(\overline{x})$ are equivalent modulo T if for every $M \models T$, we have $\phi(M) = \psi(M)$ (equivalently, if $T \vdash \forall \overline{x}.\phi(\overline{x}) \leftrightarrow \psi(\overline{x})$).
- *T* has quantifier elimination (q.e.) if every *L*-formula is equivalent modulo *T* to a quantifier-free *L*-formula (i.e., a formula without ∀, ∃).

Exercise 2.15. For every *L*-structure M, we have:

- $\phi(\overline{x}), \psi(\overline{x})$ are equivalent modulo Th(M) iff $\phi(M) = \psi(M)$.
- Th(M) has q.e. \iff every L-definable set in M can be defined by a quantifier-free formula.

A strategy for quantifier elimination

Fix a theory T. How can one prove that T has q.e.?

Proposition 2.16. T has q.e. \iff every formula of the form $\exists y.\psi(\bar{x}, y)$, where ψ is quantifier free, is equivalent modulo T to a quantifier free formula.

Proof.

- Let an arbitrary *L*-formula ϕ be given. Our goal is to get rid of quantifiers in ϕ .
- Get rid of all " \forall " using that $\forall y.\phi(\overline{x}, y)$ is equivalent to $\neg \exists y. \neg \phi(\overline{x}, y)$.
- By induction on the length of ϕ , we may replace all subformulas ψ with equivalent quantifier free ones.
- We consider the various possibilies for ϕ from the definition of formulas:
 - if ϕ is atomic, it is quantifier-free.
 - if ϕ is $\psi_1 \lor \psi_2$, the sub-formulas ψ_1, ψ_2 are quantifier free, so ϕ is, too.
 - likewise for $\psi_1 \wedge \psi_2$, $\neg \psi_1$;
 - if φ(x̄) is ∃y.ψ(x̄, y), the subformula ψ is quantifier free, so φ is equivalent to a quantifier free formula by the assumption.

Q.e. in ACF; completeness of ACF_0 , ACF_p

Let K be an algebraically closed field.

Definition 2.17. A subset of $D \subseteq K^n$ is constructible if it is a boolean combination of zero set of polynomials, i.e., if it definable with a quantifier free formula.

Theorem 2.18 (Chevalley). The projection $K^{n+1} \rightarrow K^n$ of a constructible set is constructible.

Corollary 2.19. ACF has quantifier elimination.

Proof. If $D \subseteq K^{n+1}$ is defined by $\phi(\overline{x}, y)$, then its projection to K^n is defined by $\exists y \phi(\overline{x}, y)$. By Chevalley's theorem and Proposition 2.16, ACF has q.e.

Corollary 2.20. ACF_0 and ACF_p are complete.

Proof.

- Let σ be any *L*-sentence; by q.e we may assume that σ is quantifier free.
- Thus, σ consists of $0, 1, +, -, \cdot, =, \top, \bot, \lor, \land, \neg$. (No variables!)
- In ACF, each term is equal to a sum $1 + \ldots + 1$.
- The characteristic of K determines when such terms are equal or different; this decides whether σ is true or false.

Vaught's test and the back-and-forth method

We next see another strategy to prove that a theory is complete.

Definition 2.21. Let κ be an infinite cardinal and T be a theory with models of size κ . T is called κ -categorical if it has, up to isomorphism, a unique model of cardinality κ .

Theorem 2.22 (Vaught's test). Let T be a consistent L-theory with no finite models which is κ -categorical for some infinite cardinal $\kappa \ge |L|$. Then T is complete.

Exercise 2.23. Once you have seen the Löwenheim-Skolem Theorems (Lecture 4), use them to prove Vaught's test.

Showing κ -categoricity is often done using a technique called back-and-forth. Definition 2.24. A partial isomorphism of two *L*-structures *M* and *N* is an isomorphism $f : M_0 \to N_0$ between two substructures $M_0 \subseteq_L M$, $N_0 \subseteq_L N$.

Definition 2.25. Let \mathcal{I} be a set of partial isomorphisms of M and N. We say that \mathcal{I} has the back-and-forth property if for all $f \in \mathcal{I}$:

forth: for all $m \in M$, there is $f \subseteq f' \in \mathcal{I}$ with $m \in \text{dom}(f')$;

back: for all $n \in N$, there is $f \subseteq f' \in \mathcal{I}$ with $n \in \operatorname{range}(f')$.

Completeness of DLO

Definition 2.26. DLO is the $L_{\rm ord}$ -theory of dense linear orders without endpoints.

- dense: for all a < b there exists c in between, i.e. a < c < b.
- Inear: for all a, b either a < b, a = b or b < a.
- without endpoints: there are no minimal and no maximal elements.

```
Example 2.27. \mathbb{Q} \models \mathsf{DLO}, \mathbb{R} \models \mathsf{DLO}.
```

Theorem 2.28. The theory DLO is \aleph_0 -categorical and complete.

Proof. Let $A, B \models$ DLO be countable with one-to-one enumerations a_0, a_1, \ldots and $b_0, b_1 \ldots$. We build a sequence $f_0 \subseteq f_1 \subseteq \ldots$ of partial isomorphisms $f_i : A_i \rightarrow B_i$ for $A_i \subset A$ and $B_i \subset B$ finite s.t. $f = \bigcup f_i$ is an isomorphism between $A = \bigcup A_i$ and $B = \bigcup B_i$. **Exercises 2.29.** Let *L* be any language. Specify an *L*-theory T such that the models of T are exactly the infinite *L*-structures.

- **1** Let \mathcal{T} be a consistent *L*-theory. Prove that the following are equivalent:
 - 1 T is complete;
 - **2** any two models of T are elementarily equivalent;
 - 3 T is equivalent to Th(M) for some model M of T.
- An ordered field *R* is called real closed if every positive element of *R* has a square root and every odd-degree polynomial has a zero. We denote the *L*_{oring}-theory of real closed fields by RCF.
 - Axiomatise real closed fields with $L_{\rm oring}$ -sentences.
 - By a result of Tarski, RCF has quantifier elimination in L_{oring}. Therefore, (as for ACF) one deduces that RCF is complete in L_{oring}. However, RCF does not eliminate quantifiers in L_{ring}: what are the quantifier free L_{ring}-definable sets?
- **3** Prove that the L_{ag} -theory AG of abelian groups is not complete.
- 4 Write the field axiom "every non-zero element is invertible" in $L_{\rm ring}$.
- 5 Find quantifier free formulas equivalent to the ones below:
 - **1** $\phi(x,y)$: $\exists y.x \cdot y = 1$ in $\mathbb C$ seen as an L_{ring} -structure;
 - 2 $\phi(x,y)$: $\exists x.y = x \cdot x$ in \mathbb{R} seen as an L_{oring} -structure;
 - **3** $\phi(a, b)$: $\exists x.x^2 + ax + b = 0$ in \mathbb{R} seen as an L_{oring} -structure.
- **G** Let $L = \{S\}$, where S is a unary function, and let \mathbb{Z} be an L-structure with S interpreted as the function $a \mapsto a + 1$. Prove that the L-theory $\text{Th}(\mathbb{Z})$ has q.e. Applications of model theory

Exercises 2.29. Let *L* be any language. Specify an *L*-theory T such that the models of T are exactly the infinite *L*-structures.

- **1** Let *T* be a consistent *L*-theory. Prove that the following are equivalent:
 - T is complete;
 - **2** any two models of T are elementarily equivalent;
 - 3 T is equivalent to Th(M) for some model M of T.
- An ordered field R is called real closed if every positive element of R has a square root and every odd-degree polynomial has a zero. We denote the L_{oring}-theory of real closed fields by RCF.
 - Axiomatise real closed fields with $L_{\rm oring}$ -sentences.
 - By a result of Tarski, RCF has quantifier elimination in L_{oring}. Therefore, (as for ACF) one deduces that RCF is complete in L_{oring}. However, RCF does not eliminate quantifiers in L_{ring}: what are the quantifier free L_{ring}-definable sets?
- **3** Prove that the L_{ag} -theory AG of abelian groups is not complete.
- 4 Write the field axiom "every non-zero element is invertible" in $L_{\rm ring}$.
- 5 Find quantifier free formulas equivalent to the ones below:
 - 1 $\phi(x, y)$: $\exists y.x \cdot y = 1$ in \mathbb{C} seen as an L_{ring} -structure;
 - 2 $\phi(x, y)$: $\exists x.y = x \cdot x$ in \mathbb{R} seen as an L_{oring} -structure;
 - **3** $\phi(a, b)$: $\exists x.x^2 + ax + b = 0$ in \mathbb{R} seen as an L_{oring} -structure.

C Let $L = \{S\}$, where S is a unary function, and let \mathbb{Z} be an L-structure with S interpreted as the function $a \mapsto a + 1$. Prove that the L-theory Th(\mathbb{Z}) has q.e.