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Lecture O

Introduction



What is model theory?

m Model theory concerns the interplay between mathematical structures (e.g.
groups, fields, rings, graphs, ordered sets...) and the first-order language which
is used to describe these structures.

m A study of definable sets = solution sets of first-order formulas in a structure.
B Example: D={x € Q| x#0A3y.y -y = x} is a definable set in Q defined by a
first order formula x Z0AJdy.y -y = x.

m Benefit #1: transfer results across structures.
m Some structures are indistinguishable by first order formulas (e.g. fields Qs, C).
Thus, if a result can be encoded in a formula, proving it in one structure also
proves it in many others (e.g. Lefschetz principle).

m Benefit #2: results about definable sets can be very general.
m Hope: describe all definable sets in a given structure.
B Hopeless in general: a priori, definable sets can be anything. Instead: identify
classes of ‘tame’ structures where definable sets can be controlled in some way.
m Typical examples of tameness:

Definable sets can be defined with simple formulas (e.g. no quantifiers).
Definable sets have invariants (e.g. dimension).
Existence of algorithms to decide (e.g. to decide whether a definable set is empty.)
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Lecture 1

First-order languages and structures



Languages

m Not every formula makes sense in every structure (e.g. “Jy.y - y = x”" makes
sense in a field but not in a vector space).

m A language specifies which symbols are defined in a given structure and hence
will appear in a formula.

Definition 1.1. A language isaset L = {Ry,R>,...,f1,f,...,C1,C, ...} Of

relation symbols R;, function symbols f;, and constant symbols cx. Relation and

function symbols have arities n;, m; € N.

Examples 1.2. m Lgonp := {1,-,7% }, the language of groups: 1 is a constant

symbol, - is a binary function symbol and ~! is a unary function symbol.

m L., :={0,+,—}, the language of abelian groups: 0 is a constant symbol, + is
a binary function symbol, — is a unary function symbol.

Liing := Lag U{1,-}, the language of rings: 1 is a constant symbol, - is a binary
function symbol.

® Lo.pn = {E}, the language of graphs: E is a binary relation symbol.

m L, := {<}, the language of ordered sets: < is a binary relation symbol.
B Lo i= Lag U Lorq, the language of ordered abelian groups.

B Loving := Liing U Lora, the language of ordered rings.
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Structures

m An L-structure specifies the meaning of the symbols in the language L.
Definition 1.3. An L-structure is a set M, (domain or universe), with:

m For each n-ary relation symbol R in L, a subset RM C M".

m For each m-ary function symbol f in L, a function fM: M™ — M.

m For each constant symbol c in L, an element cMe M.

RM M cM are called the interpretations of R, f, c in M.

Most of the time, we write f and R instead of fM and RM.

Warning: we denote by M both the domain and the L-structure.
Example 1.4. Any group is naturally an Lgoup-Structure, any ring with unit is

naturally an L;ine-structure, etc.

Example 1.5. Z is naturally an Lo, = {0, +, —, <}-structure:

m The interpretation 02 of the symbol 0 € L, is the usual 0 of Z.

m The interpretation +% of + € Loag is addition, i.e. (x,y) — x +y for x,y € Z.
m The interpretation —Z of — € Loag is the map x — —x.

m The interpretation <% of < is the set {(a, b) € Z? | a < b}.

Warning: do not confuse + the symbol in Ly.s with + the function 7. x 7 — 7.
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Substructures

Definition 1.6. Let L be a language and M be an L-structure. A subset N C M is
an L-substructure if it contains c™ for all constant symbols ¢ € L and if it is
closed under ™ for all function symbols f € L.

Note: such an N is an L-structure in a natural way.

Most of the time we simply write substructure instead of L-substructure.

Note: if the language L has no constant symbol, then the empty set is the
domain of a substructure of an L-structure M.

Examples 1.7. m A substructure of a group G, seen as an Lgyoup-Structure, is a
subgroup. Remember that the notion of substructure is sensitive to the language!
E.g. an L = {1, }-substructure of a group G, seen as an L-structure, is a
submonoid of G containing 1¢ and an L = {-}-substructure of a group G, seen as
an L-structure, can be empty.

m A substructure of a field F, seen as an L,ing-Structure, is a subring.

Example 1.8. Let Lyyring = Lying ™ {1} and look at Z as an Lyying-Structure. Its
substructures are kZ for k € Z: they contain 0 and are closed under +, —, -.
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Homomorphisms & embeddings

Definition 1.9. Map h: M — N between two L-structures is a homomorphism if

h(cM) = cN for all constant symbols c € L,

h(fM(a1,...,an)) = fN(h(a1),. .., h(an)) for all function symbols f € L and
al,...,an € M,

if (a1,...,am) € RM then (h(a1),...,h(am)) € RN for all relation symbols
Re L and ay,...,am € M.

An injective homomorphism 7 : M — N is an L-embedding if in addition

(a1,---,am) € RM < (n(a1),---,m(am)) € R".

A bijective L-embedding is an L-isomorphism and an L-isomorphism i : M — M is

an L-automorphism.

We often drop the L-prefix and just write embedding, isomorphism, etc.

Examples 1.10. m An Lgroup-homomorphism of groups G and H, seen as
Lgroup-structures, is just a homomorphism of groups.

®m An L,g-homomorphism of L,4-structures M and N is an order-preserving map.

Example 1.11. If N € M and the inclusion map is an L-embedding then N is a
substructure of M.
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Formulas, informally

m Examples:
“x=0V-3Jy:y+y=x"Isan Ly-formula on x (e.g. in Z it says "x is either
0 or x is odd”.
“Wx:(x>0—3y:y-y=x)"lisan Losing-formula which does not depend on a
variable. Therefore it is either true or false in a structure (e.g. true in R but false
in Q).
m Informally, a first order L-formula is a syntactically correct finite string build
using:
symbols of the language L,
symbols for variables,
equality symbol =; logical connectives V, A and —; quantifiers V and 3 and
parentheses (, ).
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Terms & formulas
Let L be a language and X = (x1,...,x,) be a tuple of variables.
Definition 1.12. An L-term in X is one of the following:

m a variable x; for some i =1,...,n;
m a constant symbol ¢ € L;

m f(t1,...,tm) where f € L is an m-ary function symbol and t;, ..., t, are
[-terms in X.

Example 1.13. 0+ x is an Lag-term in x; 1+ (x - y) is an Lying-term in (x, y).

Definition 1.14. An L-formula in X is one of the following:

m atomic: t; = tp where t, t, are L-terms in X, or R(ty,...,t,) where R € L is
an n-ary relation symbol and ti, ..., t, are L-terms in X;

B OAY, ¢V, ¢ where ¢, 1) are L-formulas in X;
m Jdy.¢, Vy.¢ where y is a variable and ¢ is an L-formula in Xy.
An L-formula is an L-sentence if X = & (i.e. n = 0).

Examples 1.15. x +y < 1 is an atomic Lgying-formula in (x,y); Vx.x = x is a
sentence (in any language!); Vx.3y.y - y = x is an Lyi,g-Sentence.
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Some notation about terms & formulas

m If ¢ is a formula in X we often write ¢(X); similarly for terms.
m We shall often use many abbreviations in notation:

¢ — ¢ in place of (—¢) V ¥;

m ¢ <> 1 in place of (¢ — ¥) A (Y — ¢);

m t; # b in place of —t; = ty;

m T is any formula which is always true (e.g. Vx : x = x).

| |

| |

1 = =T is always false.

for well understood symbols:
Bt <thinplaceof t1 < tr V t; = to;
B t; + to in place of the more accurate “+(t1, t2)";
B t; £ tyinplace of =ty <ty ...

m We add parentheses where appropriate to prevent ambiguities:

m (1+x)-xand 1+ (x-x) are different terms;
B (LVT)Ax=yand LV (T Ax=y) are different formulas.

m Some more dangerous shortcuts:

m if - € L, xy in place of x-y, x* in place of x- x, and similarly x*... (but not x”!);
mif + €Land-¢L, 2x in place of x + x, and similarly 3x... (but not xy!).
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Interpretation of formulas
An L-formula can be naturally interpreted in an L-structure M. E.g. interpreting
Lag-formula ¢(x) = 3y : 2y = x in Z, we may ask for which n € Z it is true.

Definition 1.16. Given an L-term t(xi, ..., Xs), its interpretation t"(3) is:
n tY(3) == a, if t = x;

m t"(3) ;= ¢, if t = c for some constant c € L;

n tM(3@) = MM (3), ..., tY (), if tis f(t,. .., tm).

Example 1.17. Let t be x + y: then t9(2,4) = 6, t*/°%(2,4) = 1.

Definition 1.18. Given an L-formula ¢(x1,...,x,), we write M = ¢(3) when:

m¢ist =t and t(3) = t)(3);

m $is R(t1,...,tm) and (t)(3),...,tM(3)) € RM;

m ¢ is b and M E (3); ¢ is 1 Ao and M = ¢;(3) for both i = 1,2; similarly for
Y1V o

m ¢ is Jy.(X,y) and there is b € M with M = (3, b); similarly for Vy.1(X, y).

M = ¢(3) says " ¢(3) holds in M" and, if ¢ is a sentence, “M is a model of ¢".

Example 1.19. Let ¢ be Jy.(y - y = x). Then Z = ¢(9) but Z ¥ ¢(8); Let ¢ be

Vx.(x =0V 3dy.xy =1). Then Z¥ 1 and Q = ¢.
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Definable sets and parameters

Definition 1.20. Let M be an L-structure. A set D C M" is said to be definable if
there is an L-formula ¢(X, y) and parameters b from M such that

D= ¢(M,b):={ae M": Mk ¢,b)}.

If b may be taken from B C M, we say that D is B-definable. In particular,
()-definable (or L-definable) means that there are no parameters. Convenient to
add parameters, passing to Lg := LU {cp : b € B} (L plus new constant symbols
¢p)-Then Mg is M seen as an Lg-structure and Lpg-definable sets in Mg are
B-definable in M.

Example 1.21. Consider R as an Lying-structure. The set R> is (-definable by
the formula ¢(x) := Jy.y? = x.

Example 1.22. Fix a group G, seen as an Lgoup-structure.

m The centraliser Cg(g) of a given element g € G is definable, using the
parameter g, by the formula ¢(x, g) := xg = gx.

m The center Z(G) of G is (-definable by the formula ¥(y) := Vxo(x, y).
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More examples of definable sets
Example 1.23. Fix a graph I, seen as an Lgrapn-structure.

B The set of elements of I' connected by an edge to at least two distinct elements
is B-definable by the formula ¢(x) := Ty1, ya(y1 # y2 A E(x, y1) A E(x, y»)).

m Given an element a € I, the set of elements of [ at distance < n from a is
definable by the formula

n—2
p(x,a) =31, yna( \ EGiyiva) A E(a, 1) A E(Ya-1, X))

i=1

Example 1.24. Fix a field K, seen as an L,ng-structure.
m Some L,in,-definable sets in K:
m The zero set {3 € K" | (@) = 0} of a polynomial f € Z[x].
(Note that n € N can be written as the Lying-term 14+ ...+ 1.)
—_———

n

m Boolean combinations of the above.
Note: These are all sets that are Li,z-definable without quantifiers.
m Let f € K[x]. Then {3 € K" | f(3) =0} is K-definable.

Applications of model theory 1. First-order languages and structures 11/12



Exercises 1.25. m Describe a language for structures in your research. Multiple sorts (i.e.
several domains) may be helpful; see the example of vector spaces on Wikipedia.

10
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Let R be a ring, seen as an Lyuring-structure. Is it true that S C R is a substructure
& S is an ideal?

Look at C as an L;ing-structure. Is Z C C a substructure? Write a language Lgeld
interpret its symbols in C so that the substructures of C are exactly the subfields of C.

Consider R as an L;ing-structure. Are sentences Ix.x +x = x-x, Vx.Jy.x+y =x-y
true in R? Is there an Lying-formula ¢(x,y) such that R = ¢(a, b) iff a < b?

Write down an Lgroup-sentence o such that G |= o iff G is abelian.

Find a sentence o in a language with only a unary function symbol f such that o has
infinite but no finite models.

Let G be a group, seen as an Lgroup-structure. Express “G is divisible”. (Hint: you
need infinitely many sentences.)

Express “there are exactly two y's s.t. M |= é(y)" (abbreviated as 372).

Let G be a group, seen as an Lgroup-structure. Assume that there is a finite bound on
the length of any chain of centralisers in G. Prove: Cg(A) is definable for any A C G.

Let L = Loving U {f}, where f is a unary function symbol. Write an L-sentence o such
that M = o if and only if f is continuous at 0.

Prove: For any Loring-formula ¢(X), there is an Liing-formula ¢(X) such that

R | Vx.¢(X) <> 9(X).


https://en.wikipedia.org/wiki/Structure_(mathematical_logic)#Many-sorted_structures

Further examples of structures

We have seen graphs, groups, rings, ordered sets, ordered groups and rings.

Vector spaces over K: Li.vect = Lag U {Ar}rek, where each )\, is a unary
function symbol representing “scalar multiplication by r”.

Action of G on a set: Lg = {\g}gec, where each ), is a unary function.

If G is finitely generated by S C G: Ls = {\z}ges. Note how we can now talk
about e.g. actions of SLy(F,) but with p not fixed.

Group acting on a set: two sorts G and X, language L., on the sort G, plus
function symbol p: G x X — X.

Group with representation: two sorts G and V, language L., on G, language
Lk-vect on V/, plus function symbol p: G x V — V. Since the two languages
overlap, we need to write {O¢,+¢, —¢,0v,+v, —v, p} to distinguish the
symbols on the sort G from the symbols on the sort V.

Vector spaces: sorts K and V/, language L;ing on K, Lag on V, plus function
symbol A : K x V — V. Again {0k, 1k, +k,---,0v,+v,..., A}

Profinite groups: one sort of each n € N representing “cosets of open normal
subgroups of index < n"; binary relations <, , (inclusion of underlying
subgroup); binary functions -, (product inside underlying subgroup); binary
relations C, n, (coset inclusion). Note how this is dual to groups: a
substructure H of a profinite group G corresponds to an epimorphism G — H.
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