An Excursion Into Model Theory and Its Applications; Lectures 1

Ulla Karhumäki

University of Helsinki

LMS online course Fall 2020

Lecture 0 Introduction

What is model theory?

- Model theory concerns the interplay between mathematical structures (e.g. groups, fields, rings, graphs, ordered sets...) and the *first-order language* which is used to describe these structures.
 - A study of *definable sets* = *solution sets of first-order formulas* in a structure.
 - Example: $D = \{x \in \mathbb{Q} \mid x \neq 0 \land \exists y.y \cdot y = x\}$ is a definable set in \mathbb{Q} defined by a first order formula $x \neq 0 \land \exists y.y \cdot y = x$.
- Benefit #1: transfer results across structures.
 - Some structures are indistinguishable by first order formulas (e.g. fields Q^{alg}, C). Thus, if a result can be encoded in a formula, proving it in one structure also proves it in many others (e.g. Lefschetz principle).
- Benefit #2: results about definable sets can be very general.
 - Hope: describe *all* definable sets in a given structure.
 - Hopeless in general: a priori, definable sets can be anything. Instead: identify classes of 'tame' structures where definable sets can be controlled in some way.
 - Typical examples of tameness:
 - **1** Definable sets can be defined with simple formulas (e.g. no quantifiers).
 - **2** Definable sets have invariants (e.g. dimension).
 - 3 Existence of algorithms to decide (e.g. to decide whether a definable set is empty.)

Lecture 1 First-order languages and structures

Languages

- Not every formula makes sense in every structure (e.g. " $\exists y.y \cdot y = x$ " makes sense in a field but not in a vector space).
- A language specifies which symbols are defined in a given structure and hence will appear in a formula.

Definition 1.1. A language is a set $L = \{R_1, R_2, \dots, f_1, f_2, \dots, c_1, c_2, \dots\}$ of relation symbols R_i , function symbols f_j , and constant symbols c_k . Relation and function symbols have arities $n_i, m_j \in \mathbb{N}$.

Examples 1.2. \blacksquare $L_{\text{group}} := \{1, \cdot, ^{-1}\}$, the language of *groups*: 1 is a constant symbol, \cdot is a binary function symbol and $^{-1}$ is a unary function symbol.

- $L_{ag} := \{0, +, -\}$, the language of *abelian groups*: 0 is a constant symbol, + is a binary function symbol, is a unary function symbol.
- $L_{ring} := L_{ag} \cup \{1, \cdot\}$, the language of *rings*: 1 is a constant symbol, \cdot is a binary function symbol.
- $L_{\text{graph}} := \{E\}$, the language of *graphs*: *E* is a binary relation symbol.
- $L_{ord} := \{<\}$, the language of *ordered sets*: < is a binary relation symbol.
- $L_{\text{oag}} := L_{\text{ag}} \cup L_{\text{ord}}$, the language of *ordered abelian groups*.
- $L_{\text{oring}} := L_{\text{ring}} \cup L_{\text{ord}}$, the language of *ordered rings*.

Structures

• An *L*-structure specifies the *meaning* of the symbols in the language *L*. Definition 1.3. An *L*-structure is a set M, (domain or universe), with:

For each *n*-ary relation symbol *R* in *L*, a subset $R^M \subseteq M^n$.

• For each *m*-ary function symbol *f* in *L*, a function $f^M \colon M^m \to M$.

For each constant symbol c in L, an element $c^M \in M$.

 R^M , f^M , c^M are called the interpretations of R, f, c in M. Most of the time, we write f and R instead of f^M and R^M .

Warning: we denote by *M* both the domain and the *L*-structure. Example 1.4. Any group is naturally an L_{group} -structure, any ring with unit is naturally an L_{ring} -structure, etc.

Example 1.5. \mathbb{Z} is naturally an $L_{\text{oag}} = \{0, +, -, <\}$ -structure:

• The interpretation $0^{\mathbb{Z}}$ of the symbol $0 \in L_{ag}$ is the usual 0 of \mathbb{Z} .

• The interpretation $+^{\mathbb{Z}}$ of $+ \in L_{\text{oag}}$ is addition, i.e. $(x, y) \mapsto x + y$ for $x, y \in \mathbb{Z}$.

- The interpretation $-^{\mathbb{Z}}$ of $\in L_{\text{oag}}$ is the map $x \mapsto -x$.
- The interpretation $<^{\mathbb{Z}}$ of < is the set $\{(a, b) \in \mathbb{Z}^2 \mid a < b\}$.

Warning: do not confuse + the symbol in L_{oag} with + the function $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$.

Substructures

Definition 1.6. Let *L* be a language and *M* be an *L*-structure. A subset $N \subseteq M$ is an *L*-substructure if it contains c^M for all constant symbols $c \in L$ and if it is closed under f^M for all function symbols $f \in L$. Note: such an *N* is an *L*-structure in a natural way. Most of the time we simply write substructure instead of *L*-substructure.

Note: if the language L has no constant symbol, then the empty set is the domain of a substructure of an L-structure M. Examples 1.7. \blacksquare A substructure of a group G, seen as an L_{group} -structure, is a subgroup. Remember that the notion of substructure is sensitive to the language! E.g. an $L = \{1, \cdot\}$ -substructure of a group G, seen as an L-structure, is a submonoid of G containing 1^G and an $L = \{\cdot\}$ -substructure of a group G, seen as an L-structure, can be empty.

• A substructure of a field F, seen as an L_{ring} -structure, is a subring.

Example 1.8. Let $L_{\text{nuring}} = L_{\text{ring}} \setminus \{1\}$ and look at \mathbb{Z} as an L_{nuring} -structure. Its substructures are $k\mathbb{Z}$ for $k \in \mathbb{Z}$: they contain 0 and are closed under $+, -, \cdot$.

Homomorphisms & embeddings

Definition 1.9. Map $h: M \rightarrow N$ between two *L*-structures is a homomorphism if

- 1 $h(c^M) = c^N$ for all constant symbols $c \in L$,
- 2 $h(f^{M}(a_{1},\ldots,a_{n})) = f^{N}(h(a_{1}),\ldots,h(a_{n}))$ for all function symbols $f \in L$ and $a_{1},\ldots,a_{n} \in M$,
- 3 if $(a_1, \ldots, a_m) \in \mathbb{R}^M$ then $(h(a_1), \ldots, h(a_m)) \in \mathbb{R}^N$ for all relation symbols $R \in L$ and $a_1, \ldots, a_m \in M$.

An injective homomorphism $\eta : M \to N$ is an *L*-embedding if in addition $(a_1, \ldots, a_m) \in R^M \Leftrightarrow (\eta(a_1), \ldots, \eta(a_m)) \in R^N$. A bijective *L*-embedding is an *L*-isomorphism and an *L*-isomorphism $i : M \to M$ is an *L*-automorphism.

We often drop the L-prefix and just write embedding, isomorphism, etc.

Examples 1.10. • An L_{group} -homomorphism of groups G and H, seen as L_{group} -structures, is just a homomorphism of groups.

• An L_{ord} -homomorphism of L_{ord} -structures M and N is an order-preserving map.

Example 1.11. If $N \subseteq M$ and the inclusion map is an *L*-embedding then N is a substructure of M.

Applications of model theory

Formulas, informally

Examples:

- 1 " $x = 0 \lor \neg \exists y : y + y = x$ " is an L_{ag} -formula on x (e.g. in \mathbb{Z} it says "x is either 0 or x is odd".
- 2 "∀x: (x > 0 → ∃y : y · y = x)" is an L_{oring}-formula which does not depend on a variable. Therefore it is either true or false in a structure (e.g. true in ℝ but false in ℚ).
- Informally, a first order L-formula is a syntactically correct finite string build using:
 - **1** symbols of the language *L*,
 - 2 symbols for variables,
 - 3 equality symbol =; logical connectives ∨, ∧ and ¬; quantifiers ∀ and ∃ and parentheses (,).

Terms & formulas

Let L be a language and $\overline{x} = (x_1, \ldots, x_n)$ be a tuple of variables.

Definition 1.12. An *L*-term in \overline{x} is one of the following:

- a variable x_i for some $i = 1, \ldots, n$;
- a constant symbol $c \in L$;

■ $f(t_1,...,t_m)$ where $f \in L$ is an *m*-ary function symbol and $t_1, ..., t_m$ are *L*-terms in \overline{x} .

Example 1.13. 0 + x is an L_{ag} -term in x; $1 + (x \cdot y)$ is an L_{ring} -term in (x, y).

Definition 1.14. An *L*-formula in \overline{x} is one of the following:

atomic: $t_1 = t_2$ where t_1 , t_2 are *L*-terms in \overline{x} , or $R(t_1, \ldots, t_n)$ where $R \in L$ is an *n*-ary relation symbol and t_1, \ldots, t_n are *L*-terms in \overline{x} ;

• $\phi \land \psi$, $\phi \lor \psi$, $\neg \phi$ where ϕ , ψ are *L*-formulas in \overline{x} ;

■ $\exists y.\phi, \forall y.\phi$ where y is a variable and ϕ is an *L*-formula in $\overline{x}y$.

An *L*-formula is an *L*-sentence if $\overline{x} = \emptyset$ (i.e. n = 0).

Examples 1.15. x + y < 1 is an atomic L_{oring} -formula in (x, y); $\forall x.x = x$ is a sentence (in any language!); $\forall x.\exists y.y \cdot y = x$ is an L_{ring} -sentence.

Applications of model theory

Some notation about terms & formulas

- If ϕ is a formula in \overline{x} we often write $\phi(\overline{x})$; similarly for terms.
- We shall often use many abbreviations in notation:
 - $\phi \to \psi$ in place of $(\neg \phi) \lor \psi$;
 - $\phi \leftrightarrow \psi$ in place of $(\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$;
 - $t_1 \neq t_2$ in place of $\neg t_1 = t_2$;
 - \top is any formula which is always true (e.g. $\forall x : x = x$).
 - $\bot = \neg \top$ is always false.
 - for well understood symbols:

•
$$t_1 \le t_2$$
 in place of $t_1 < t_2 \lor t_1 = t_2$;

- $t_1 + t_2$ in place of the more accurate "+ (t_1, t_2) ";
- $t_1 \not< t_2$ in place of $\neg t_1 < t_2 \dots$
- We add parentheses where appropriate to prevent ambiguities:
 - $(1+x) \cdot x$ and $1 + (x \cdot x)$ are different terms;
 - $(\bot \lor \top) \land x = y$ and $\bot \lor (\top \land x = y)$ are different formulas.
- Some more dangerous shortcuts:
 - if $\cdot \in L$, xy in place of $x \cdot y$, x^2 in place of $x \cdot x$, and similarly x^3 ... (but not x^y !);
 - if $+ \in L$ and $\cdot \notin L$, 2x in place of x + x, and similarly 3x... (but not xy!).

Interpretation of formulas

An *L*-formula can be naturally interpreted in an *L*-structure *M*. E.g. interpreting L_{ag} -formula $\psi(x) = \exists y : 2y = x$ in \mathbb{Z} , we may ask for which $n \in \mathbb{Z}$ it is true.

Definition 1.16. Given an *L*-term $t(x_1, \ldots, x_n)$, its interpretation $t^M(\overline{a})$ is:

•
$$t^{M}(\overline{a}) := a_{i}$$
, if $t = x_{i}$;
• $t^{M}(\overline{a}) := c^{M}$, if $t = c$ for some constant $c \in L$;
• $t^{M}(\overline{a}) := f^{M}(t_{1}^{M}(\overline{a}), \dots, t_{m}^{M}(\overline{a}))$, if t is $f(t_{1}, \dots, t_{m})$.

Example 1.17. Let t be x + y: then $t^{\mathbb{Q}}(2,4) = 6$, $t^{\mathbb{Z}/5\mathbb{Z}}(\overline{2},\overline{4}) = \overline{1}$.

Definition 1.18. Given an *L*-formula $\phi(x_1, \ldots, x_n)$, we write $M \models \phi(\overline{a})$ when:

•
$$\phi$$
 is $t_1 = t_2$ and $t_1^M(\overline{a}) = t_2^M(\overline{a})$;

•
$$\phi$$
 is $R(t_1, \ldots, t_m)$ and $(t_1^M(\overline{a}), \ldots, t_m^M(\overline{a})) \in R^M$;

• ϕ is $\neg \psi$ and $M \nvDash \psi(\bar{a})$; ϕ is $\psi_1 \land \psi_2$ and $M \models \psi_i(\bar{a})$ for both i = 1, 2; similarly for $\psi_1 \lor \psi_2$

• ϕ is $\exists y.\psi(\overline{x}, y)$ and there is $b \in M$ with $M \models \psi(\overline{a}, b)$; similarly for $\forall y.\psi(\overline{x}, y)$.

 $M \models \phi(\overline{a})$ says " $\phi(\overline{a})$ holds in M" and, if ϕ is a sentence, "M is a model of ϕ ".

Example 1.19. Let ϕ be $\exists y.(y \cdot y = x)$. Then $\mathbb{Z} \models \phi(9)$ but $\mathbb{Z} \nvDash \phi(8)$; Let ψ be $\forall x.(x = 0 \lor \exists y.xy = 1)$. Then $\mathbb{Z} \nvDash \psi$ and $\mathbb{Q} \models \psi$.

Applications of model theory

Definable sets and parameters

Definition 1.20. Let M be an L-structure. A set $D \subseteq M^n$ is said to be definable if there is an L-formula $\phi(\bar{x}, \bar{y})$ and parameters \bar{b} from M such that

$$D = \phi(M, \overline{b}) := \{\overline{a} \in M^n : M \models \phi(\overline{a}, \overline{b})\}.$$

If \overline{b} may be taken from $B \subseteq M$, we say that D is *B*-definable. In particular, \emptyset -definable (or *L*-definable) means that there are no parameters. Convenient to add parameters, passing to $L_B := L \cup \{c_b : b \in B\}$ (*L* plus new constant symbols c_b). Then M_B is M seen as an L_B -structure and L_B -definable sets in M_B are *B*-definable in M.

Example 1.21. Consider \mathbb{R} as an L_{ring} -structure. The set $\mathbb{R}_{\geq 0}$ is \emptyset -definable by the formula $\phi(x) := \exists y. y^2 = x$.

Example 1.22. Fix a group G, seen as an L_{group} -structure.

- The centraliser $C_G(g)$ of a given element $g \in G$ is definable, using the parameter g, by the formula $\phi(x, g) := xg = gx$.
- The center Z(G) of G is \emptyset -definable by the formula $\psi(y) := \forall x \phi(x, y)$.

More examples of definable sets

Example 1.23. Fix a graph Γ , seen as an $L_{\rm graph}\text{-structure}.$

- The set of elements of Γ connected by an edge to at least two distinct elements is Ø-definable by the formula φ(x) := ∃y₁, y₂(y₁ ≠ y₂ ∧ E(x, y₁) ∧ E(x, y₂)).
- Given an element *a* ∈ Γ, the set of elements of Γ at distance ≤ *n* from *a* is definable by the formula

$$\psi(x, a) := \exists y_1, \ldots, y_{n-1} (\bigwedge_{i=1}^{n-2} E(y_i, y_{i+1}) \wedge E(a, y_1) \wedge E(y_{n-1}, x)).$$

Example 1.24. Fix a field K, seen as an L_{ring} -structure.

- Some L_{ring} -definable sets in K:
 - The zero set {ā ∈ Kⁿ | f(ā) = 0} of a polynomial f ∈ ℤ[x].
 (Note that n ∈ N can be written as the L_{ring}-term 1 + ... + 1.)

Boolean combinations of the above.

Note: These are *all* sets that are L_{ring} -definable without quantifiers.

• Let
$$f \in K[\overline{x}]$$
. Then $\{\overline{a} \in K^n \mid f(\overline{a}) = 0\}$ is K-definable.

n

Exercises 1.25. Describe a language for structures in your research. Multiple sorts (i.e. several domains) may be helpful; see the example of vector spaces on Wikipedia.

- **I** Let *R* be a ring, seen as an L_{nuring} -structure. Is it true that $S \subseteq R$ is a substructure $\Leftrightarrow S$ is an ideal?
- 2 Look at C as an L_{ring}-structure. Is Z ⊆ C a substructure? Write a language L_{field} interpret its symbols in C so that the substructures of C are exactly the subfields of C.
- **3** Consider \mathbb{R} as an L_{ring} -structure. Are sentences $\exists x.x + x = x \cdot x$, $\forall x.\exists y.x + y = x \cdot y$ true in \mathbb{R} ? Is there an L_{ring} -formula $\phi(x, y)$ such that $\mathbb{R} \models \phi(a, b)$ iff a < b?
- **4** Write down an L_{group} -sentence σ such that $G \models \sigma$ iff G is abelian.
- **I** Find a sentence σ in a language with only a unary function symbol f such that σ has infinite but no finite models.
- **G** Let G be a group, seen as an L_{group} -structure. Express "G is divisible". (Hint: you need infinitely many sentences.)
- **7** Express "there are exactly two y's s.t. $M \models \phi(y)$ " (abbreviated as $\exists^{=2}$).
- B Let G be a group, seen as an L_{group} -structure. Assume that there is a finite bound on the length of any chain of centralisers in G. Prove: $C_G(A)$ is definable for any $A \subseteq G$.
- 9 Let $L = L_{\text{oring}} \cup \{f\}$, where f is a unary function symbol. Write an L-sentence σ such that $M \models \sigma$ if and only if f is continuous at 0.
- **T** Prove: For any L_{oring} -formula $\phi(\overline{x})$, there is an L_{ring} -formula $\psi(\overline{x})$ such that $\mathbb{R} \models \forall \overline{x}. \phi(\overline{x}) \leftrightarrow \psi(\overline{x}).$

Applications of model theory

1. First-order languages and structures

Further examples of structures

- We have seen graphs, groups, rings, ordered sets, ordered groups and rings.
- Vector spaces over K: $L_{K-\text{vect}} = L_{\text{ag}} \cup \{\lambda_r\}_{r \in K}$, where each λ_r is a unary function symbol representing "scalar multiplication by r".
- Action of G on a set: $L_G = \{\lambda_g\}_{g \in G}$, where each λ_g is a unary function.
- If G is finitely generated by S ⊆ G: L_S = {λ_g}_{g∈S}. Note how we can now talk about e.g. actions of SL₂(𝔽_p) but with p not fixed.
- Group acting on a set: two sorts G and X, language L_{ag} on the sort G, plus function symbol $\rho: G \times X \to X$.
- Group with representation: two sorts G and V, language L_{ag} on G, language L_{K-vect} on V, plus function symbol $\rho: G \times V \to V$. Since the two languages overlap, we need to write $\{0_G, +_G, -_G, 0_V, +_V, -_V, \rho\}$ to distinguish the symbols on the sort G from the symbols on the sort V.
- Vector spaces: sorts K and V, language L_{ring} on K, L_{ag} on V, plus function symbol $\lambda : K \times V \to V$. Again $\{0_K, 1_K, +_K, \dots, 0_V, +_V, \dots, \lambda\}$.
- Profinite groups: one sort of each $n \in \mathbb{N}$ representing "cosets of open normal subgroups of index $\leq n$ "; binary relations $\leq_{n,m}$ (inclusion of underlying subgroup); binary functions \cdot_n (product inside underlying subgroup); binary relations $C_{n,m}$ (coset inclusion). Note how this is *dual* to groups: a substructure H of a profinite group G corresponds to an epimorphism $G \to H$.