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Lecture 0

Introduction



What is model theory?

Model theory concerns the interplay between mathematical structures (e.g.
groups, fields, rings, graphs, ordered sets. . .) and the first-order language which
is used to describe these structures.

A study of definable sets = solution sets of first-order formulas in a structure.

Example: D = {x ∈ Q | x 6= 0 ∧ ∃y .y · y = x} is a definable set in Q defined by a
first order formula x 6= 0 ∧ ∃y .y · y = x .

Benefit #1: transfer results across structures.

Some structures are indistinguishable by first order formulas (e.g. fields Qalg, C).
Thus, if a result can be encoded in a formula, proving it in one structure also
proves it in many others (e.g. Lefschetz principle).

Benefit #2: results about definable sets can be very general.
Hope: describe all definable sets in a given structure.

Hopeless in general: a priori, definable sets can be anything. Instead: identify
classes of ‘tame’ structures where definable sets can be controlled in some way.

Typical examples of tameness:

1 Definable sets can be defined with simple formulas (e.g. no quantifiers).
2 Definable sets have invariants (e.g. dimension).
3 Existence of algorithms to decide (e.g. to decide whether a definable set is empty.)
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Lecture 1

First-order languages and structures



Languages
Not every formula makes sense in every structure (e.g. “∃y .y · y = x” makes
sense in a field but not in a vector space).
A language specifies which symbols are defined in a given structure and hence
will appear in a formula.

Definition 1.1. A language is a set L = {R1,R2, . . . , f1, f2, . . . , c1, c2, . . .} of
relation symbols Ri , function symbols fj , and constant symbols ck . Relation and
function symbols have arities ni ,mj ∈ N.

Examples 1.2. Lgroup := {1, ·,−1 }, the language of groups: 1 is a constant
symbol, · is a binary function symbol and −1 is a unary function symbol.

Lag := {0,+,−}, the language of abelian groups: 0 is a constant symbol, + is
a binary function symbol, − is a unary function symbol.

Lring := Lag ∪ {1, ·}, the language of rings: 1 is a constant symbol, · is a binary
function symbol.

Lgraph := {E}, the language of graphs: E is a binary relation symbol.

Lord := {<}, the language of ordered sets: < is a binary relation symbol.

Loag := Lag ∪ Lord, the language of ordered abelian groups.

Loring := Lring ∪ Lord, the language of ordered rings.
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Structures
An L-structure specifies the meaning of the symbols in the language L.

Definition 1.3. An L-structure is a set M, (domain or universe), with:

For each n-ary relation symbol R in L, a subset RM ⊆ Mn.

For each m-ary function symbol f in L, a function f M : Mm → M.

For each constant symbol c in L, an element cM ∈ M.

RM , f M , cM are called the interpretations of R, f , c in M.
Most of the time, we write f and R instead of f M and RM .

Warning: we denote by M both the domain and the L-structure.

Example 1.4. Any group is naturally an Lgroup-structure, any ring with unit is
naturally an Lring-structure, etc.

Example 1.5. Z is naturally an Loag = {0,+,−, <}-structure:

The interpretation 0Z of the symbol 0 ∈ Lag is the usual 0 of Z.

The interpretation +Z of + ∈ Loag is addition, i.e. (x , y) 7→ x + y for x , y ∈ Z.

The interpretation −Z of − ∈ Loag is the map x 7→ −x .

The interpretation <Z of < is the set {(a, b) ∈ Z2 | a < b}.
Warning: do not confuse + the symbol in Loag with + the function Z× Z→ Z.
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Substructures

Definition 1.6. Let L be a language and M be an L-structure. A subset N ⊆ M is
an L-substructure if it contains cM for all constant symbols c ∈ L and if it is
closed under f M for all function symbols f ∈ L.
Note: such an N is an L-structure in a natural way.
Most of the time we simply write substructure instead of L-substructure.

Note: if the language L has no constant symbol, then the empty set is the
domain of a substructure of an L-structure M.
Examples 1.7. A substructure of a group G , seen as an Lgroup-structure, is a
subgroup. Remember that the notion of substructure is sensitive to the language!
E.g. an L = {1, ·}-substructure of a group G , seen as an L-structure, is a
submonoid of G containing 1G and an L = {·}-substructure of a group G , seen as
an L-structure, can be empty.

A substructure of a field F , seen as an Lring-structure, is a subring.

Example 1.8. Let Lnuring = Lring r {1} and look at Z as an Lnuring-structure. Its
substructures are kZ for k ∈ Z: they contain 0 and are closed under +, −, ·.
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Homomorphisms & embeddings
Definition 1.9. Map h : M → N between two L-structures is a homomorphism if

1 h(cM) = cN for all constant symbols c ∈ L,

2 h(f M(a1, . . . , an)) = f N(h(a1), . . . , h(an)) for all function symbols f ∈ L and
a1, . . . , an ∈ M,

3 if (a1, . . . , am) ∈ RM then (h(a1), . . . , h(am)) ∈ RN for all relation symbols
R ∈ L and a1, ..., am ∈ M.

An injective homomorphism η : M → N is an L-embedding if in addition
(a1, . . . , am) ∈ RM ⇔ (η(a1), . . . , η(am)) ∈ RN .
A bijective L-embedding is an L-isomorphism and an L-isomorphism i : M → M is
an L-automorphism.
We often drop the L-prefix and just write embedding, isomorphism, etc.

Examples 1.10. An Lgroup-homomorphism of groups G and H, seen as
Lgroup-structures, is just a homomorphism of groups.

An Lord -homomorphism of Lord -structures M and N is an order-preserving map.

Example 1.11. If N ⊆ M and the inclusion map is an L-embedding then N is a
substructure of M.
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Formulas, informally

Examples:

1 “x = 0 ∨ ¬∃y : y + y = x” is an Lag-formula on x (e.g. in Z it says “x is either
0 or x is odd”.

2 “∀x : (x > 0→ ∃y : y · y = x)” is an Loring-formula which does not depend on a
variable. Therefore it is either true or false in a structure (e.g. true in R but false
in Q).

Informally, a first order L-formula is a syntactically correct finite string build
using:

1 symbols of the language L,
2 symbols for variables,
3 equality symbol =; logical connectives ∨, ∧ and ¬; quantifiers ∀ and ∃ and

parentheses (, ).
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Terms & formulas
Let L be a language and x = (x1, . . . , xn) be a tuple of variables.

Definition 1.12. An L-term in x is one of the following:

a variable xi for some i = 1, . . . , n;

a constant symbol c ∈ L;

f (t1, . . . , tm) where f ∈ L is an m-ary function symbol and t1, . . ., tm are
L-terms in x .

Example 1.13. 0 + x is an Lag-term in x ; 1 + (x · y) is an Lring-term in (x , y).

Definition 1.14. An L-formula in x is one of the following:

atomic: t1 = t2 where t1, t2 are L-terms in x , or R(t1, . . . , tn) where R ∈ L is
an n-ary relation symbol and t1, . . ., tn are L-terms in x ;

φ ∧ ψ, φ ∨ ψ, ¬φ where φ, ψ are L-formulas in x ;

∃y .φ, ∀y .φ where y is a variable and φ is an L-formula in xy .

An L-formula is an L-sentence if x = ∅ (i.e. n = 0).

Examples 1.15. x + y < 1 is an atomic Loring-formula in (x , y); ∀x .x = x is a
sentence (in any language!); ∀x .∃y .y · y = x is an Lring-sentence.
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Some notation about terms & formulas

If φ is a formula in x we often write φ(x); similarly for terms.

We shall often use many abbreviations in notation:

φ→ ψ in place of (¬φ) ∨ ψ;
φ↔ ψ in place of (φ→ ψ) ∧ (ψ → φ);
t1 6= t2 in place of ¬t1 = t2;
> is any formula which is always true (e.g. ∀x : x = x).
⊥ = ¬> is always false.
for well understood symbols:

t1 ≤ t2 in place of t1 < t2 ∨ t1 = t2;
t1 + t2 in place of the more accurate “+(t1, t2)”;
t1 ≮ t2 in place of ¬t1 < t2 . . .

We add parentheses where appropriate to prevent ambiguities:

(1 + x) · x and 1 + (x · x) are different terms;
(⊥ ∨>) ∧ x = y and ⊥ ∨ (> ∧ x = y) are different formulas.

Some more dangerous shortcuts:

if · ∈ L, xy in place of x · y , x2 in place of x · x , and similarly x3. . . (but not xy !);
if + ∈ L and · /∈ L, 2x in place of x + x , and similarly 3x . . . (but not xy !).
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Interpretation of formulas
An L-formula can be naturally interpreted in an L-structure M. E.g. interpreting
Lag-formula ψ(x) = ∃y : 2y = x in Z, we may ask for which n ∈ Z it is true.

Definition 1.16. Given an L-term t(x1, . . . , xn), its interpretation tM(a) is:

tM(a) := ai , if t = xi ;

tM(a) := cM , if t = c for some constant c ∈ L;

tM(a) := f M(tM1 (a), . . . , tMm (a)), if t is f (t1, . . . , tm).

Example 1.17. Let t be x + y : then tQ(2, 4) = 6, tZ/5Z(2, 4) = 1.

Definition 1.18. Given an L-formula φ(x1, . . . , xn), we write M |= φ(a) when:

φ is t1 = t2 and tM1 (a) = tM2 (a);

φ is R(t1, . . . , tm) and (tM1 (a), . . . , tMm (a)) ∈ RM ;

φ is ¬ψ and M 2 ψ(a); φ is ψ1 ∧ ψ2 and M |= ψi (a) for both i = 1, 2; similarly for
ψ1 ∨ ψ2

φ is ∃y .ψ(x , y) and there is b ∈ M with M |= ψ(a, b); similarly for ∀y .ψ(x , y).

M |= φ(a) says ”φ(a) holds in M” and, if φ is a sentence,“M is a model of φ”.

Example 1.19. Let φ be ∃y .(y · y = x). Then Z |= φ(9) but Z 2 φ(8); Let ψ be
∀x .(x = 0 ∨ ∃y .xy = 1). Then Z 2 ψ and Q |= ψ.
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Definable sets and parameters

Definition 1.20. Let M be an L-structure. A set D ⊆ Mn is said to be definable if
there is an L-formula φ(x̄ , ȳ) and parameters b̄ from M such that

D = φ(M, b̄) := {ā ∈ Mn : M |= φ(ā, b̄)}.

If b̄ may be taken from B ⊆ M, we say that D is B-definable. In particular,
∅-definable (or L-definable) means that there are no parameters. Convenient to
add parameters, passing to LB := L ∪ {cb : b ∈ B} (L plus new constant symbols
cb).Then MB is M seen as an LB -structure and LB -definable sets in MB are
B-definable in M.

Example 1.21. Consider R as an Lring-structure. The set R>0 is ∅-definable by
the formula φ(x) := ∃y .y2 = x .

Example 1.22. Fix a group G , seen as an Lgroup-structure.

The centraliser CG (g) of a given element g ∈ G is definable, using the
parameter g , by the formula φ(x , g) := xg = gx .

The center Z (G ) of G is ∅-definable by the formula ψ(y) := ∀xφ(x , y).
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More examples of definable sets
Example 1.23. Fix a graph Γ, seen as an Lgraph-structure.

The set of elements of Γ connected by an edge to at least two distinct elements
is ∅-definable by the formula φ(x) := ∃y1, y2(y1 6= y2 ∧ E (x , y1) ∧ E (x , y2)).

Given an element a ∈ Γ, the set of elements of Γ at distance 6 n from a is
definable by the formula

ψ(x , a) := ∃y1, . . . , yn−1(
n−2∧
i=1

E (yi , yi+1) ∧ E (a, y1) ∧ E (yn−1, x)).

Example 1.24. Fix a field K , seen as an Lring-structure.

Some Lring-definable sets in K :

The zero set {a ∈ K n | f (a) = 0} of a polynomial f ∈ Z[x ].
(Note that n ∈ N can be written as the Lring-term 1 + . . .+ 1︸ ︷︷ ︸

n

.)

Boolean combinations of the above.

Note: These are all sets that are Lring-definable without quantifiers.

Let f ∈ K [x ]. Then {a ∈ K n | f (a) = 0} is K -definable.
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Exercises 1.25. Describe a language for structures in your research. Multiple sorts (i.e.
several domains) may be helpful; see the example of vector spaces on Wikipedia.

1 Let R be a ring, seen as an Lnuring-structure. Is it true that S ⊆ R is a substructure
⇔ S is an ideal?

2 Look at C as an Lring-structure. Is Z ⊆ C a substructure? Write a language Lfield

interpret its symbols in C so that the substructures of C are exactly the subfields of C.

3 Consider R as an Lring-structure. Are sentences ∃x .x + x = x · x , ∀x .∃y .x + y = x · y
true in R? Is there an Lring-formula φ(x , y) such that R |= φ(a, b) iff a < b?

4 Write down an Lgroup-sentence σ such that G |= σ iff G is abelian.

5 Find a sentence σ in a language with only a unary function symbol f such that σ has
infinite but no finite models.

6 Let G be a group, seen as an Lgroup-structure. Express “G is divisible”. (Hint: you
need infinitely many sentences.)

7 Express “there are exactly two y ’s s.t. M |= φ(y)” (abbreviated as ∃=2).

8 Let G be a group, seen as an Lgroup-structure. Assume that there is a finite bound on
the length of any chain of centralisers in G . Prove: CG (A) is definable for any A ⊆ G .

9 Let L = Loring ∪ {f }, where f is a unary function symbol. Write an L-sentence σ such
that M |= σ if and only if f is continuous at 0.

10 Prove: For any Loring-formula φ(x), there is an Lring-formula ψ(x) such that
R |= ∀x .φ(x)↔ ψ(x).
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Further examples of structures

We have seen graphs, groups, rings, ordered sets, ordered groups and rings.

Vector spaces over K : LK -vect = Lag ∪ {λr}r∈K , where each λr is a unary
function symbol representing “scalar multiplication by r”.

Action of G on a set: LG = {λg}g∈G , where each λg is a unary function.

If G is finitely generated by S ⊆ G : LS = {λg}g∈S . Note how we can now talk
about e.g. actions of SL2(Fp) but with p not fixed.

Group acting on a set: two sorts G and X , language Lag on the sort G , plus
function symbol ρ : G × X → X .

Group with representation: two sorts G and V , language Lag on G , language
LK -vect on V , plus function symbol ρ : G × V → V . Since the two languages
overlap, we need to write {0G ,+G ,−G , 0V ,+V ,−V , ρ} to distinguish the
symbols on the sort G from the symbols on the sort V .

Vector spaces: sorts K and V , language Lring on K , Lag on V , plus function
symbol λ : K × V → V . Again {0K , 1K ,+K , . . . , 0V ,+V , . . . , λ}.
Profinite groups: one sort of each n ∈ N representing “cosets of open normal
subgroups of index ≤ n”; binary relations ≤n,m (inclusion of underlying
subgroup); binary functions ·n (product inside underlying subgroup); binary
relations Cn,m (coset inclusion). Note how this is dual to groups: a
substructure H of a profinite group G corresponds to an epimorphism G → H.
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