
The geometry of coherent topoi &
ultrastructures

Ivan Di Liberti

YAMCATS
Dec 2022, Manchester.



This talk is based on a preprint that you can find on the ArXiv.
• The geometry of coherent topoi & ultrastructures,
ArXiv:2211.03104.

Plan
1 Motivation: understanding ultraproducts

2 Translate the question into topos theory

3 Back to ultrastructures
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First order logic is special in many ways.
• The category of models of an (essentially) algebraic theory is
(co)complete.

• This allows for several constructions (free models).
• The category of models of a first order theory may not
complete nor cocomplete.

• Fld does not have products.
• First order theories are harder to study than (essentially)
algebraic ones.
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Ultraproducts

Yet, given an X-indexed family of models of a first order theory T

M1,M2, . . . ,Mi . . .

there is a way to construct a new model. For U an ultrafilter on
X, we can quotient the cartesian product along the ultrafilter

ΠMi/U.

This construction is functorial.
ˆ

(−)dU : Mod(T)X → Mod(T).
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Ultraproducts are important

Once one acknowledges the existence of ultraproducts one can
quickly show:
• Compactness of first order logic
• Completeness of first order logic

So the construction of ultraproducts can be accepted as a
defining property of first order logic.
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Original motivations (and a bit of drama)

Understand ultrastructures.
• Ultrastructures were introduced in Stone duality for
first-order logic by Makkai in 1987.
• He wanted to capture the construction of ultraproducts.
• They are the main technology to prove the celebrated
conceptual completeness.

Conceptual completeness
Let f : F → G be a morphisms of pretopoi. If the induced functor
between categories of models is an equivalence of categories, then
f is an equivalence too,

f ∗ : Mod(G)→ Mod(F).
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Original motivations (and a bit of drama)

Understand ultrastructures.
• Ultrastructures a la Makkai are extremely complicated and
technical.
• No news until 1995, Marmolejo’s PhD thesis.
• No news until 2019, Lurie’s ultracategories.
• Lurie’s notion differs from Makkai’s one!
• Who’s right?!

Idea: let ultrastructures emerge as a necessary structure so that
we can isolate the correct definition.
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Recap

• Essentially algebraic ; any (co)limit of models.
• First order ; ultraproducts and directed colimits of models.
• Geometric ; directed colimits of models.

Can the existence of some colimits/construction be a property of
the fragment of logic? How do we even ask this question? We
would need an environment in which all these theories sit together
in order to compare them...
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Classifying topoi

These fragments of logic are classified by a different kinds of
topos!
• Essentially algebraic ; SetC with C lex.
• First order ; coherent topoi.
• Geometric ; topoi.

Remember that the category of points pt(E) of the topos E are
the same of the models of the theory E classifies

pt(ET) ' Mod(T)

.
So, for example, for an essentially algebraic theory T, pt(ET) is
complete and cocomplete.
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So coherent topoi should be special among topoi?

Spoiler
Yes. But we start from something easier.
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Colimits are Kan extensions

When we want to show that a category C had limits of shape
D,we can try and prove that the right Kan extension below exists

D C

1

∀f

∃

Indeed this is the same of askind that the the diagonal functor
∆ : C1 → CD has a right adjoint.

(Weak Kan Injectivity)
In the recent paper KZ monads and Kan Injectivity by Sousa,
Lobbia and DL this behaviour is called Weak Kan Injectivity.
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Prop. Terminal geometric morphisms can test completeness

If a topos E is weakly Kan injective with respect to the terminal
geometric morphism Γ : SetD → Set, then its category of points
has limits of shape D.

SetD E

Set

Γ

∀f

∃

Indeed this is the same of askind that the the diagonal functor
pt(E) = Topoi(Set, E)→ Topoi(SetD, E) = pt(E)D has a right
adjoint.
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Prop. Essentially algebraic theories are injective

The classifying topos SetC of an essentially agebraic theory is
weakly Kan injective with respect to any geometric morphism and
Kan injective with respect to geometric embeddings.

F SetC

G

x

∀f

∃h

Define h∗ = lany (x∗f
∗y). One can show that in this case

h∗ = lanx∗(f∗).
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We are convinced that Kan injectivity can isolate classes of topoi
with special properties.

Next Steps
• Show that coherent topoi are Kan injective with respect to a
special class of maps.
• Recover the ultrastructure from such property.

Definition
A geometric morphism x : F → G is flat if x∗ preserve finite
colimits.
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Thm.
Coherent topoi are Kan injective with respect to flat embeddings.
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If we now show that h∗ ∼= j∗j
∗h∗, we are done.

j∗j
∗h∗ ∼=j∗j∗lani∗(j∗x∗)
∼=j∗lani∗(j∗j∗x∗)
∼=j∗lani∗(x∗)

(∗) ∼=lani∗(j∗x∗)
∼=h∗.

Why j∗ preserves the Kan extension lani∗(x∗)?

j∗lani∗(x∗)(y) ∼= j∗( colim
i∗(d)→y

x∗(d))

Because i∗ preserve finite colimits, the diagram indexing the
colimit is filtered, and thus is preserved by j∗.
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So we have shown that coherent topoi are special.

Now we
should recover the ultrastructure from this property.

Rem.
Let X be a set and let β(X) be its space of ultrafilters. Call
i : X → β(X) the inclusion mapping each element to the principal
ultafilter at that element. Then the induced geometric embedding
is flat

Sh(X)→ Sh(β(X)).

Observe that because the topology on X is discrete, Sh(X) is
SetX .
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We will need a tautological factorization of the map i in the
previous slide.

(X, disc) SetX

(β(X), d isc) (β(X), τ) Setβ(X) Sh(β(X))

j
i

q

i
j

q

Now, consider a coherent topos and recall that we are Kan
injective with respect to i .
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SetX E

Setβ(X) Sh(β(X))

f

i

i](f )

j

q

pt(E)X Topoi(Sh(β(X)), E) Topoi(Setβ(X), E)

Topoi(Set, E)X Topoi(SetX , E) pt(E)β(X)
'

'

q]

'i]
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Altogether, and with a bit of abuse of notation that ignores the
equivalence of categories, we obtain a functor

q]X i
X
] : pt(E)X → pt(E)β(X). (1)

If we now transpose this functor, we obtain the pairing below,
which we shall denote suggestively by an integral notation,

ˆ
X

(−)d(−) : pt(E)X × β(X)→ pt(E). (2)

We have presented the main ideas in the first two sections of the
paper. In the rest of the paper we further develop the properties
of
´
X(−)d(−) and axiomatise them in our notion of

ultrastructure. Which turns out to be Lurie’s!. Kinda.
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