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What this talk is about

I’m going to discuss two basic themes that cross-cut many different
areas of mathematics:

1. What kind of info can topological data encode?
2. When can we solve a problem by breaking it into smaller pieces?

I’ll then discuss how the research project ‘Adelic Geometry via Topos
Theory’ serves as an interesting test problem for illuminating how
these two themes interact with each other.
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Homotopical Data = Geometric Data
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Homotopical Data = Geometric Data

▶ Question: Are these the only line bundles over S1 (up to
isomorphism)?

▶ Answer: Yes.
▶ Why? Exploit the tight relationship between [Sk−1,GLn(R)] and

Vectn(Sk ).
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Homotopical Data = Geometric Data

Classification Theorem
Suppose that X is a paracompact space. Let Vectn(X ) be the set of
isomorphism classes of n-dimensional vector bundles over X .
Then the map

[X ,Gn] −→ Vectn(X )

given by f 7−→ f ∗(γn) is a bijection, where γn is the universal bundle.
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Continuity = Geometricity

A similar attitude occurs in topos theory in regards to geometric logic:

— Vickers, ’Continuity and Geometric Logic’

Ming Ng |



6

Geometric Logic

Theories and Models
A theory can be viewed as an axiomatic description of mathematical
structures (e.g. the theory of groups);

a model is a structure that
‘satisfies’ these axioms.

Geometric Theory
A geometric theory is a theory whose (formulae featured in its)
axioms are built out of certain logical connectives — i.e. =, finite
conjunctions ∧, arbitrary (possibly infinite) disjunctions

∨
, and ∃.
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Example: Theory of Dedekind Reals

As an example, consider the geometric theory of Dedekind reals,
which we denote R.

A model x of R is a Dedekind real number, which
will be represented by two sets of rationals (L,R), whereby:

L = {q ∈ Q|q < x}

R = {r ∈ Q|x < r}

Otherwise known as the left and right Dedekind sections of the real
number.
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Points of a Topos

Definition
▶ A geometric morphism f : F → E of toposes is a pair of adjoint

functors f∗ : F → E and f ∗ : E → F , respectively called the direct
image and the inverse image of f , such that the left adjoint f ∗

preserves finite limits and arbitrary colimits.

Definition
1. A global point of a topos E is defined as a geometric morphism

Set→ E .
2. A generalised point of a topos E is a geometric morphism F → E .
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Topos = Generalised Space

Definition
The classifying topos of a geometric theory T is a Grothendieck topos
Set[T] that classifies the models of T in Grothendieck toposes, i.e. for
any Grothendieck topos E , we have an equivalence of categories:

Geom(E ,Set[T]) ≃ T-mod(E)

Theorem
Every Grothendieck topos is a classifying topos of some geometric
theory T, and every geometric theory T has a classifying topos.

Slogan
Models = points of a topos.

In particular, we can reason in terms of
the points of the topos (as a generalised space) as opposed to only
reasoning in terms of its objects/sheaves (as a category).
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Point-free Topology - A Bird’s Eye View

Point-set Topology
▶ Point = Element of a set
▶ Space = A set of points, along with a set of opens satisfying

some specific axioms.
▶ Continuous Maps = A function f : X → Y such that f−1(U) is

open for all opens U ⊂ Y

Pointfree Topology
▶ Point = Model of a geometric theory
▶ Space = The ‘World’ in which the point lives with other points (i.e.

a Grothendieck topos)
▶ Continuous Maps = A geometric morphism f : E → F such that

f ∗ : F → E preserves finite limits and small colimits
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Generic Model

Fact
There exists a generic model UT living in every classifying topos,

which possesses the universal property that that any model M in a
Grothendieck topos E can be obtained as f ∗(UT) ∼= M via the inverse
image functor of some (unique) f : E → Set[T].

An important consequence of this is that any geometric sequent that
holds for UT will hold for all models M of T.
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Generic Model
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‘Divide-and-Conquer’

X n + Y n + Z n = 0 (n > 2)

▶ Question: What are the rational (equiv. integer) solutions to this
polynomial? — hard!

▶ Observation #1: Integer solutions imply real and modulo p
solutions (in fact p-adic solutions).

▶ Observation #2: Real and p-adic solutions are easier to deal with
than just integer/rational solutions.

▶ New Question: Given a polynomial with Q-coefficients, when
does knowledge about its Qp and R-solutions give us info about
its Q-solutions?
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Hasse’s Local-Global Principle

Local-Global Principle for Q
Some property P is true for Q iff P is true for all the completions of Q.

Definition of adele ring for Q
The adele ring AQ is defined to be the restricted product of all the
completions of Q. Morally, the adele ring can be viewed as a device
that allows us to reason about all the completions of Q
simultaneously.

Idea
Instead of asking whether a property simultaneously holds for all
completions of Q (which forces us to use complicated algebraic
constructions like the adele ring AQ), what if we asked whether a
property holds for the generic completion of Q?
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Generic Completion

“One weakness in the analogy between the collection of
{Ks}s∈S for a compact Riemann surface S and the collection
{Qp, for prime numbers p, and R} is that [...] no manner of
squinting seems to be able to make R the least bit mistake-
able for any of the p-adic fields, nor are the p-adic fields Qp
isomorphic for distinct p.

A major theme in the development of Number Theory has
been to try to bring R somewhat more into line with the
p-adic fields; a major mystery is why R resists this attempt
so strenuously.”

— Mazur, ’Passage from Local to Global in Number Theory’
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Investigation begins...

Starting point:

For simplicity, let us assume that our base field is Q. Classically, an
absolute value of Q is a function | · | : Q→ R such that for all x , y ∈ Q:

▶ |x | ≥ 0, and |x | = 0 iff x = 0

▶ |xy | = |x ||y |
▶ |x + y | ≤ |x |+ |y |
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Investigation begins...

Starting point:

For simplicity, let us assume that our base field is Q. Classically, an
absolute value of Q is a function | · | : Q→ R such that for all x , y ∈ Q:

▶ |x | ≥ 0, and |x | = 0 iff x = 0
▶ |xy | = |x ||y |
▶ |x + y | ≤ |x |+ |y |

We define a place as an equivalence class of absolute values
whereby | · |1 ∼ | · |2 if there exists some α ∈ (0,1] such that
| · |1 = | · |α2 or | · |2 = | · |α1 .
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Classifying Topos of Places of Q

▶ Intuitively: what does this topos look like?
▶ The points of this topos would correspond to equivalence classes

of absolute values, such that:
1. | · |α ∼ | · |

for any absolute value | · |, and α ∈ (0,1]

[av ]× (0,1] [av ]
ex

π

▶ π is the projection map sending (| · |, α) 7→ | · |
▶ ex is the exponentiation map sending (| · |, α) 7→ | · |α
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Classifying Topos of Places of Q

▶ Intuitively: what does this topos look like?
▶ The points of this topos would correspond to equivalence classes

of absolute values, such that:
1. | · |α ∼ | · |

2. | · |1 = | · |
3. (| · |α)β = | · |α·β

for any absolute value | · |, and α, β ∈ (0,1]

▶ In essence, we would like to ‘quotient’ the topos [av ] by an
algebraic action – two questions:
▶ Is the notion of (real) exponentiation geometric? Ng-Vickers (2022)
▶ What does it mean to quotient by a monoid action vs. group action?
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Global vs. Local Picture

Ostrowski’s Theorem for Q
Every absolute value of Q is equivalent to a (non-Archimedean)
p-adic absolute value | · |p (for some prime p), or the Archimedean
absolute value | · |∞.
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Non-Archimedean Place (for fixed prime p)

[avNA]× (0,∞) [avNA] D

ex

π

s

▶ For any non-Arch. absolute | · |, exponentiating | · |α still yields a
non-Arch. absolute value for any α ∈ (0,∞) (unlike the
Archimedean case).

▶ What is D?

Theorem
D ≃ {∗}
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Archimedean Place

[avA]× (0,1] [avA] D′

m

π

s

▶ Space of Arch. absolute values is acted upon by a monoid
(0,1]-action as opposed to a group (0,∞)-action.

▶ Can we play the same game as we did in the Non-Archimedean
case? Answer: No! (The topos corresponding to D′ has
non-trivial forking in its sheaves)

▶ So what is D′?
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case? Answer: No! (The topos corresponding to D′ has
non-trivial forking in its sheaves)

▶ So what is D′?
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Archimedean Place

Theorem

D′ ≃
←−−−
[0,1]

(the space of ‘upper reals’ between 0 and 1)
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Archimedean Place

Theorem

D′ ≃
←−−−
[0,1] (the space of ‘upper reals’ between 0 and 1)

▶ The Arakelov compactification of Spec(Z) suggests that we add a
single point at infinity to Spec(Z) corresponding to the
‘Archimedean prime’ . . . our picture suggests that there is some
blurring going on at infinity, and that infinity is not just a classical
point with no intrinsic structure.
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A Strange Woods
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Function Field Analogy

“In order to re-establish the analogy, it is necessary to
introduce, into the theory of algebraic numbers, something
that corresponds to the point at infinity in the theory of
functions [...] to define a “prime ideal at infinity” [...]

If one follows it in all of its consequences, the theory alone
permits us to reestablish the analogy at many points where it
once seemed defective.”

— André Weil’s Letter to his sister, 1940
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Function Field Analogy

Reorienting our perspective
The issue of how to unite the Archimedean and the non-Archimedean
settings is not (just) an algebraic question, but a topological one: how
should the connected and the disconnected interact?
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Topos-Theoretic Implications

▶ Caramello: “Toposes as Unifying Bridges”

“Toposes can effectively act as unifying spaces for trans-
ferring information between distinct mathematical theories
and for generating new equivalences, dualities and symme-
tries across different fields of Mathematics.”

— Olivia Caramello
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Topos-Theoretic Implications

▶ Caramello: “Toposes as Unifying Bridges”

A Basic Challenge
When is this a helpful framework for transferring info? When is it not
so helpful?
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Logical Berkovich Geometry

Question: where else might we see spaces whose points correspond
to valuations?

Berkovich Affine Line
Let K be a non-Archimedean field that is non-trivially valued.The
Berkovich Affine line A1

Berk is the set of multiplicative seminorms on
K [T ] (extending | · | on K ), equipped with the Berkovich topology.
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Logical Berkovich Geometry

Equivalent Characterisations of A1
Berk

Assuming that K is non-Arch. + non-trivially valued:

1. The set of bounded multiplicative seminorms on K [T ] equipped
with the Berkovich topology;

2. A space whose points are defined by a sequence of nested
closed discs Dr1(k1) ⊇ Dr2(k2) ⊇ . . . contained in K ;

3. The space of types over K , concentrating on A1
K , that are “almost

orthogonal to Γ”;
4. A profinite R-tree.

Theorem (N.)
Let A := K{R−1T} be the ring of formal power series convergent in
radius R > 0, where K is non-Arch but need not be non-trivially
valued. Then, the space of R-good filters is (classically) equivalent to
the Berkovich spectrumM(A).
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By way of conclusion...

▶ Theme #1: Viewing toposes as a framework uniting logic and
topology

▶ Theme #2: Local-Global issues, and its connections to Theme
#1 via generic reasoning

▶ Pulling away from the set theory reveals key insights into the
deep nerve connecting topology and algebra.

▶ Some very interesting indications that there is some blurring at
infinity in our picture of Spec(Z) — interesting to explore the
precise implications of this + broader question of how the
connected and disconnected ought to interact.
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