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Motivation

AIM: To study particle statistics in topological phases.

• Topological quantum computation is a proposed framework for carrying out

computation by controlling the movement of emergent particles in

topological phases.

• Topological phases are described by assigning a space of states to each

possible particle configuration, and a linear operator to each particle

trajectory.
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Motivation

• Particle trajectories modelled by motion groupoids, (generalised) tangle

categories, defect cobordism categories, embedded cobordism categories...

• Here we are interested in representations of the above categories which are

invariant up to a notion of homotopy equivalence of the complement of the

particle trajectory (Yetter, Kitaev, Untwisted Dijkgraaf-Witten, Quinn, knot

group, Artin rep of braids). Notice such complements are generally not

compact manifolds.

• Such functors may factor through other categories that may be easier to work

with - I will give a construction of a category of cofibrant cospans of

topological spaces. Functors into this category are obtained roughly by taking

the complement of particle trajectories.

• I will also show that a Yetter’s TQFTs associated to finite groups generalise

to functors from this category.
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Cofibrant cospans and homotopy

cobordisms



Cofibrant cospans

Definition
Let X , Y and M be spaces. A cofibrant cospan from X to Y is a diagram

i ∶X →M ← Y ∶ j such that ⟨i , j⟩∶X ⊔Y →M is a closed cofibration.

For spaces X ,Y ∈ Top, we define the set of all concrete cofibrations

CofCos(X ,Y ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

X Y

M
i j

RRRRRRRRRRRRR
⟨i , j⟩ is a closed cofibration

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.
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Cofibrant cospans

S1

D2

ji
S1S1S1
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Cofibrant cospans

X

Y

M
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Cofibrant cospans

Example
Let X be a space. The cospan idX ∶X → X ← X ∶ idX is not a cofibrant cospan,

unless X = ∅.

Proposition
For X a topological space, the cospan ιX0 ∶X → X × I← X ∶ιX1 is a cofibrant cospan

(where ιXa ∶X → X × I is the map x ↦ (x , a)).

6



Composition of cofibrant cospans

Lemma
(I ) For any spaces X ,Y and Z in Ob(Top) there is a composition of cofibrant

cospans

● ∶CofCos(X ,Y ) × CofCos(Y ,Z)→ CofCos(X ,Z)

⎛
⎜
⎝
X Y

M
i j

,

Y Z

N
k l

⎞
⎟
⎠
↦

X Z

M ⊔Y N
ĩ l̃

where ĩ = pM ○ i and l̃ = pN ○ l are obtained via the following diagram

X Y Z

M N

M ⊔Y N,

i j k l

pM pN

the middle square of which is the pushout of j ∶M ← Y → N ∶ k in Top.

(II ) Hence there is a magmoid

CofCos = (Ob(Top),CofCos(−,−), ●).
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Equivalence classes cofibrant cospans

Lemma
For each pair X ,Y ∈ Ob(CofCos), we define a relation on CofCos(X ,Y ) by

⎛
⎜
⎝
X Y

M
i j

⎞
⎟
⎠

ch∼
⎛
⎜
⎝
X Y

Ni ′ j ′

⎞
⎟
⎠

if there exists a commuting diagram

M

X Y

M ′

ψ

i

i ′

j

j ′

where ψ is a homotopy equivalence. For each pair X ,Y ∈ Top the relations

(CofCos(X ,Y ), ch∼) are a congruence on CofCos.
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Category of cofibrant cospans

Theorem (T.)
The quadruple

CofCos =
⎛
⎜
⎝
Ob(Top) , CofCos(X ,Y )/ ch∼ , ● ,

⎡⎢⎢⎢⎢⎣

X X

X × IιX0 ιX1

⎤⎥⎥⎥⎥⎦ch

⎞
⎟
⎠

is a category.
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Category of cofibrant cospans

Proof uses classical theorem (E.g. Brown06, Thm7.2.8):

If
X Y

M
i j

,
X Y

Ni ′ j ′
are cospans such that ⟨i , j⟩∶X ⊔Y →M and

⟨i ′, j ′⟩∶X ⊔Y → N are cofibrations, then the set of homotopy equivalences ψ such

that
M

X Y

M ′

ψ

i

i ′

j

j ′

commutes, is in bijective correspondence with the set of ψ′ such that there exists

ϕ∶N →M with ψ′ ○ ϕ and ϕ ○ ψ′ homotopic to identity through maps commuting

with cospans.
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Monoidal category of cofibrant cospans

There is a functor Φ∶Top→ CofCos which sends a continuous map f ∶X → Y to

the cospan
X Y

Y × IιY0 ○f ιY1
.

Theorem (T.)
There is a monoidal category (CofCos,⊗,∅, αX ,Y ,Z , λX , ρX , βX ,Y ) where

⎡⎢⎢⎢⎢⎣

W X

M
i j

⎤⎥⎥⎥⎥⎦ch
⊗
⎡⎢⎢⎢⎢⎣

Y Z

N
k l

⎤⎥⎥⎥⎥⎦ch
=
⎡⎢⎢⎢⎢⎣

W ⊔Y X ⊔ Z
M ⊔Ni⊔k j⊔l

⎤⎥⎥⎥⎥⎦ch
.

All other maps are the images of the corresponding maps in (Top,⊔).
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Category of homotopy cobordisms

Definition
A space X is called homotopically 1-finitely generated if π(X ,A) is finitely
generated for all finite sets of basepoints A.

Let χ denote the class of all homotopically 1-finitely generated spaces.

Theorem
There is a (symmetric monoidal) subcategory of CofCos

HomCob =
⎛
⎜
⎝
χ,HomCob(X ,Y ), ● ,

⎡⎢⎢⎢⎢⎣

X X

X × IιX0 ιX1

⎤⎥⎥⎥⎥⎦ch

⎞
⎟
⎠
.
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ZG ∶HomCob→ VectC



ZG ∶HomCob→ VectC

Definition
Let (X ,X0), (Y ,Y0) and (M,M0) be such that X ,Y and M are in χ and

X0,Y0,M0 finite representative subsets. A concrete based homotopy cobordism

from (X ,X0) to (Y ,Y0) is a diagram i ∶ (X ,X0)→ (M,M0)← (Y ,Y0) ∶ j such
that:

1. i ∶X →M → Y ∶ j is a concrete homotopy cobordism.

2. i and j are maps of pairs.

3. M0 ∩ i(X ) = i(X0) and M0 ∩ j(Y ) = j(Y0).
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ZG ∶HomCob→ VectC

(D2,D2
0)

ji
(S1,S1

0
′)(S1,S1

0 )
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ZG ∶HomCob→ VectC

For a pair (X ,X0) ∈ χχχ, define

Z!
G(X ,X0) = C (Grpd (π(X ,X0),G)) .
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Example

π(X ,X0) ≅ (Z∗Z)⊔{∗}⊔{∗}. Maps from π(X ,X0) to G are determined by pairs

in G ×G , whose elements respectively denote the images of the equivalence classes

of the loops marked x1 and x2 in the figure, so we have Z!
G(X ,X0) ≅ C(G ×G).

x1
x2
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ZG ∶HomCob→ VectC

Let i ∶ (X ,X0)→ (M,M0)← (Y ,Y0) ∶ j be a concrete based homotopy cobordism,

we define a matrix

Z!
G (

(X ,X0) (Y ,Y0)

(M,M0)
i j ) ∶ Z!

G(X ,X0)→ Z!
G(Y ,Y0)

as follows. Let f ∈ Z!
G(X ,X0) and g ∈ Z!

G(Y ,Y0) be basis elements, then

⟨g ∣Z!
G (

(X ,X0) (Y ,Y0)

(M,M0)
i j )∣f ⟩ =

RRRRRRRRRRRRRRRRRRRRRR

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

h ∶ π(M,M0)→ G

RRRRRRRRRRRRRRRRRRRRRR

π(X ,X0) π(Y ,Y0)

π(M,M0)

G

π(i)

f

π(j)

g
h

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

RRRRRRRRRRRRRRRRRRRRRR
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ZG ∶HomCob→ VectC

Lemma
The map Z!

G preserves composition, extended in the obvious way to a composition

of based cospans.

π(X ,X0) π(Y ,Y0) π(Z ,Z0)

π(M,M0) π(N,N0)

π(M ⊔Y N,M0 ⊔Y0 N0)

G

π(i)

f

π(k)π(j) π(l)

g
h
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ZG ∶HomCob→ VectC

Lemma
Let X be a topological space, G a group, X0 ⊆ X a finite representative subset and

y ∈ X a point with with y ∉ X0. There is a non-canonical bijection of sets

Θγ ∶Grpd(π(X ,X0),G) ×G → Grpd(π(X ,X0 ∪ {y}),G)
(f ,g)↦ F

where γ is a choice of a path from some x ∈ X0 to y and F is the extension along

γ and g .
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ZG ∶HomCob→ VectC

Consider a concrete homotopy cobordism, i ∶ (X ,X0)→ (M,M0)← (Y ,Y0) ∶ j . It
follows

Z!
G(M,M0 ∪ {m}) = ∣G ∣Z!

G(M,M0).

It follows that for all M ′0 and M0, we can write

Z!
G(M,M ′0 ∪M0) = ∣G ∣(∣M

′

0∪M0∣−∣M0∣)Z!
G(M,M0)

and

Z!
G(M,M ′0 ∪M0) = ∣G ∣(∣M

′

0∪M0∣−∣M′0∣)Z!
G(M,M ′0)

which together imply

∣G ∣−∣M0∣Z!
G(M,M0) = ∣G ∣−∣M

′

0∣Z!
G(M,M ′0)

and that

∣G ∣−(∣M0∣−∣X0∣)Z!
G(M,M0) = ∣G ∣−(∣M

′

0∣−∣X0∣)Z!
G(M,M ′0).
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ZG ∶HomCob→ VectC

Lemma
We redefine the linear map we assign to a concrete based homotopy cobordisms as

Z!!
G (

(X ,X0) (Y ,Y0)

(M,M0)
i j ) = ∣G ∣−(∣M0∣−∣X0∣)Z!

G (
(X ,X0) (Y ,Y0)

(M,M0)
i j ) .

The map Z!!
G does not depend on the choice of subset M0 ⊆M, and this preserves

composition. When the relevant cospan is clear, we will refer to this as

Z!!
G(M,X0,Y0) to highlight the dependence on X0 and Y0.
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ZG ∶HomCob→ VectC

Lemma
There is a contravariant functor

VX ∶ FinSet∗(X )→ Set

constructed as follows. Let Xα,Xβ ∈ Ob(FinSet∗(X )) with Xβ ⊆ Xα. Let
VX (Xα) = Grpd(π(X ,Xα),G). For any vα ∈ VX (Xα) we have a commuting

triangle

π(X ,Xβ) π(X ,Xα)

G .

ιβα

vα○ιβα

vα

Now let VX (ιβα∶Xβ → Xα) = ϕαβ where ϕαβ ∶ VX (Xα)→ VX (Xβ), vα ↦ vα ○ ιαβ .
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ZG ∶HomCob→ VectC

Definition
For X ∈ χ define

ZG(X ) = colim(V ′X ) = C(colim(VX ))

where V ′X = FVC ○ VX and VX ∶FinSet∗(X )→ Set.
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ZG ∶HomCob→ VectC

Let i ∶X →M ← Y ∶ j be a concrete homotopy cobordism. Fix a choice of Yα′ ⊆ Y
such that (Y ,Yα′) ∈ χχχ. For each pair Xα,Xβ ⊆ X such that (X ,Xα), (X ,Xβ) ∈ χχχ
we have the following diagram

Z!
G (X ,Xα) Z!

G (X ,Xβ)

ZG(X )

Z!
G(Y ,Yα′)

ZG(Y ).

Z!!
G (M,Xα,Yα′)

ϕX
αβ

ϕX
α

Z!!
G (M,Xβ ,Yα′)

ϕX
β

dM
α′

ϕY
α′

(1)
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ZG ∶HomCob→ VectC

Lemma
The assignment

ZG

⎛
⎜
⎝
X Y

M
i j

⎞
⎟
⎠
= ϕYα′dM

α′

does not depend on the choice of Yα′ .

Theorem (T.)
ZG is a functor.
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ZG ∶HomCob→ VectC

Lemma
Let i ∶X →M ← Y ∶ j be a concrete homotopy cobordism,

i ∶ (X ,X0)→ (M,M0)← (Y ,Y0) ∶ j a choice of concrete based homotopy

cobordism, and [f ] ∈ ZG(X ) and [g] ∈ ZG(Y ) be basis elements (so [f ], for
example, is an equivalence class in colim(VX )), then

⟨[g]∣ZG(M)∣[f ]⟩ = ∣G ∣−(∣M0∣−∣X0∣)∑
g∈ϕY−1

0 ([g])
∣{h∶π(M,M0)→ G ∣h∣π(X ,X0) = f ∧ h∣π(Y ,Y0) = g}∣

= ∣G ∣−(∣M0∣−∣X0∣) ∑
g∈ϕY−1

0 ([g])
⟨g ∣Z!!

G(M,M0) ∣ f ⟩

where ϕY0 ∶Z!
G(Y ,Y0)→ ZG(Y ) is the map into colim(V ′Y ).

Equivalently

⟨[g]∣ZG(M)∣[f ]⟩=∣G ∣−(∣M0∣−∣X0∣) ∣{h ∶ π(M,M0)→ G ∣h∣π(X ,X0) = f ∧ h∣π(Y ,Y0) ∼ g}∣
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ZG ∶HomCob→ VectC

V(Xα)/≅ V(Xα) V(Xβ)

colim(V)ϕ̂α

ϕαβpα

ϕα ϕβ

Theorem (T.)
For X a space, the map ϕ̂α is an isomorphism. Hence, for a homotopically

1-finitely generated space X ∈ χ

ZG(X ) = C((Grpd(π(X ,X0),G)/ ≅),

for any choice X0 ⊂ X of finite representative subset, where ≅ denotes taking maps

up to natural transformation.

Further,

ZG(X ) = C((Grpd(π(X ),G)/ ≅),

.
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Example

x1
x2

Let X be the complement of the embedding of two circles shown. Letting X0 ⊂ X
be the subset shown, Grpd(π(X ,X0),G) = G ×G as discussed previously. Since

all objects are mapped to the unique object in G , taking maps up to natural

transformation is means taking maps up to conjugation by elements of G at each

basepoint, hence in this case maps are labelled by pairs of elements of G , up to

simultaneous conjugation, so we have ZG(X ) = C((G ×G)/G).
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Example

X

Y

γ1
γ2

x1 x2

y1

γ3 M

Basis elements in ZG(X ) are given by equivalence classes [(f1, f2)] where f1, f2 ∈ G
and [] denotes simultaneous conjugation by the same element of G .

Basis elements in ZG(Y ) are given by elements of g taken up to conjugation,

denoted [g1]. We have

⟨[g1]∣ZG(M)∣[(f1, f2)]⟩ = ∣G ∣−2 {a,b, c ,d , e ∈ G ∣ a = f1,b = f2,g1 ∼ ebae−1}
= {e ∈ G ∣ g1 ∼ ef1f2e−1}

=
⎧⎪⎪⎨⎪⎪⎩

∣G ∣ if g1 ∼ f1f2
0 otherwise.
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Example

Let x ∈ X be the basepoint which is in the connected component of X homotopy

equivalent to the punctured disk, and x ′ ∈ X some choice of basepoint in the other

connected component. There is a bijection sending a map h ∈ Grpd(π(M,M0),G)
to a quadruple (h′,h(γ1),h(γ2),h(γ3)) ∈ Grpd(π(M,{x , x ′}) ×G ×G ×G , where

h′ is the restriction of h to π(M,{x , x ′}). Now π(M,{x , x ′}) is the disjoint union

of the groupoids π(M1,{x}) and π(M2,{x ′}) where M1 is the path connected

component of M containing x , and M2 is the path connected component

containing x ′. The group π(M2,{x ′}) is trivial, so there is one unique map into

G . The group π(M1,{x}) is isomorphic to the twice punctured disk, which has

fundamental group isomorphic to the free product Z∗Z. This isomorphism can be

realised by sending the loop x1 to the 1 in the first copy of Z and x2 to the 1 in

the second copy of Z. Thus we can label elements in Grpd(π(M1,{x}),G) by
elements of G ×G where g1 ∈ (g1,g2) corresponds to the image of x1, and g2 the

image of x2. Hence a map in Grpd(π(M,M0),G) is determined by a five tuple

(a,b, c ,d , e) ∈ G ×G ×G ×G ×G where a corresponds to the image of x1, b to the

image of x2, and c , d and e correspond to the images of γ1, γ2 and γ3 respectively.
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