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to functors from this category.



Cofibrant cospans and homotopy
cobordisms



Definition
Let X, Y and M be spaces. A cofibrant cospan from X to Y is a diagram

i:X > M <Y :j such that (i,j): XU Y — M is a closed cofibration.
For spaces X, Y € Top, we define the set of all concrete cofibrations

Y

(i,j) is a closed cofibration } .

X
CofCos(X,Y)={ ~ v,
i M J










Example
Let X be a space. The cospan idx: X — X « X :idx is not a cofibrant cospan,

unless X = @.

Proposition
For X a topological space, the cospan LS<:X - XxI+< X ZLi( is a cofibrant cospan

(where (X: X - X x T is the map x + (x,a)).



Lemma
(1) For any spaces X, Y and Z in Ob(Top) there is a composition of cofibrant

cospans

- :CofCos(X, Y) x CofCos(Y,Z) - CofCos(X, Z)
X Y Y V4 X V4
N AV 7y
M7 N Muy N

where i = pys o i and [= pwn o | are obtained via the following diagram

NN A

/\/II_IyN7

the middle square of which is the pushout of j: M <« Y — N:k in Top.



Lemma
For each pair X, Y € Ob(CofCos), we define a relation on CofCos(X, Y) by

(x y) C,,(x y)
AN K . ~ N W .,
m TN

if there exists a commuting diagram

MI

where 1) is a homotopy equivalence. For each pair X, Y € Top the relations
(CofCos(X, Y), CNh) are a congruence on CofCos.



Theorem (T.)
The quadruple

. X
CofCos = | Ob(Top) , CofCos(X,Y)/ <, +, |« &
o X xI " i

is a category.



Proof uses classical theorem (E.g. Brown06, Thm7.2.8):
X Y X Y ..
If  ~ w. . ,~ , arecospanssuch that (i,j):XuY - M and
M TN
(i",j"): X u'Y — N are cofibrations, then the set of homotopy equivalences v such

that
M

X/ w’\jY

Lo

MI
commutes, is in bijective correspondence with the set of v’ such that there exists

¢:N — M with ¢' o ¢ and ¢ o 1)’ homotopic to identity through maps commuting
with cospans.
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There is a functor ®: Top — CofCos which sends a continuous map f: X — Y to

X
the cospan , Koy
g of Y xI 2

Theorem (T.)
There is a monoidal category (CofCos, ®, &, ax,v.z, Ax, px, Bx.y) where

i W ®

w X
i M J

N g ik O} o
k NI iy MuN ju

ch d ch

% z] _quY Xuz
h

All other maps are the images of the corresponding maps in (Top,U).
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Definition
A space X is called homotopically 1-finitely generated if w(X,A) is finitely

generated for all finite sets of basepoints A.
Let x denote the class of all homotopically 1-finitely generated spaces.

Theorem
There is a (symmetric monoidal) subcategory of CofCos

X X
Lé(\ K X

HomCob = | x, HomCob(X, Y), -,
XxI “

ch
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Definition
Let (X, Xp), (Y, Ys) and (M, My) be such that X, Y and M are in x and

Xo, Yo, My finite representative subsets. A concrete based homotopy cobordism
from (X, Xo) to (Y, Yo) is a diagram i: (X, Xo) = (M, My) < (Y, Yp) :j such
that:

1. it X > M — Y:jis a concrete homotopy cobordism.

2. i and j are maps of pairs.
3. MO n I(X) = I(Xo) and MO ﬁ_j(Y) ZJ(YO)

13



(513D ,\: /C@%s(ﬁ
S,
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For a pair (X, Xp) € x, define

ZIG(XXO) =C (Grpd (TF(X7X0)7 G)) :

15



(X, Xo) 2 (Z*Z)u{*}u{+}. Maps from 7(X, Xp) to G are determined by pairs
in G x G, whose elements respectively denote the images of the equivalence classes
of the loops marked x; and x, in the figure, so we have Zi-(X, Xp) 2 C(G x G).
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Let i: (X, Xp) = (M, Mp) < (Y, Yo) :j be a concrete based homotopy cobordism,
we define a matrix

z\ ((x,xo) ((Y.Yo)) 12 (X, X0) = Z:(Y, Yo)

i J
(M, Mo)

as follows. Let f € Zi-(X, Xo) and g € Z(Y, Yo) be basis elements, then

(X, Xo) (Y, Yo)
7 : /
<g’ G '\)(M‘Mc,) j

(X, Xo) 7(Y, Yo)

«N ()

m(M, Mo)

f)z h:m(M, M) > G
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Lemma
The map Z!G preserves composition, extended in the obvious way to a composition

of based cospans.

W(X,Xo) ﬂ'(Y, Yo) W(Z,Zo)
O A
W(M,Mo) W(N,No)

7T(M Uy N, Mo Uy, No)

J,,
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Lemma
Let X be a topological space, G a group, Xp € X a finite representative subset and

y € X a point with with y ¢ Xy. There is a non-canonical bijection of sets

©,:Grpd(7m(X,Xp),G) x G - Grpd(7w(X, Xou{y}),G)
(f.g)~ F

where 7 is a choice of a path from some x € Xj to y and F is the extension along

v and g.
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Consider a concrete homotopy cobordism, i: (X, Xp) = (M, My) < (Y, Yo) :j. It
follows

Zg(M, Mo u{m}) =G| Zs(M, Mp).
It follows that for all M} and My, we can write
Z6(M, Mg u Mo) = |G| (M MIHMDZE (M, M)

and
Z (M, Mg u Mo) = |G| IMeMl-IMD 74 (a7, mip)

which together imply
|GITMIZG (M, Mo) = |6 M1Z (M, My)

and that
\G|‘(|M°|‘|X°|)Z!G(/VI, Mo) = |G|_(‘Mo|_|XO|)Z!C;(M7 M}).
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Lemma
We redefine the linear map we assign to a concrete based homotopy cobordisms as

z4 ((X,le_ A Y°>) = |G|~ (IMol-1XeD 7! ((X’X'J),.\) g m).

2 J J
(M, Mo) (M, Mo)

The map Zg does not depend on the choice of subset My € M, and this preserves
composition. When the relevant cospan is clear, we will refer to this as
Z!G!(M,XO, Yo) to highlight the dependence on Xy and Yj.
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Lemma
There is a contravariant functor

Vx : FinSet”(X) — Set

constructed as follows. Let X,, X3 € Ob(FinSet* (X)) with X3 c X,. Let
Vx(Xa) = Grpd(7(X, X,), G). For any v, € Vx(X,) we have a commuting
triangle

(X, X5) —= 7(X, Xa)

Now let Vx (tga: Xs = Xo) = dap Where ¢op i Vx(Xa) = Vx(X3), Va = Va © Lags.
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Definition
For X € x define
Z5(X) = colim(Vy) = C(colim(Vx))

where V5 = Fy,. o Vx and Vx:FinSet*(X) — Set.
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Let i X - M < Y :j be a concrete homotopy cobordism. Fix a choice of Y, c Y
such that (Y, Y,/ ) € x. For each pair X,, X3 € X such that (X, X,), (X, Xg) e x
we have the following diagram

X
7L (X, Xy) —2 5 Zi (X, X3)
Z(M X, Yar) Zg(M.Xg, Yor) (1)

¢\> Zo(Y).
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Lemma
The assignment

X Y
Zg| v v. |= ;/d(’y

does not depend on the choice of Y.

Theorem (T.)
Zc is a functor.
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Lemma
Let i X - M < Y :j be a concrete homotopy cobordism,

i: (X, X0) = (M, Mp) < (Y, Yp) :j a choice of concrete based homotopy
cobordism, and [f] € Zg(X) and [g] € Zg(Y') be basis elements (so [f], for
example, is an equivalence class in colim(Vx)), then

(llZe(M)|[F]) = |G|"IMI=IXDS™ | e (M, Mo) > G [ Alw(x x0) = £ A Bla(yve) = &)
gedy *([g])

_ ‘G|—(|Mo|-\Xo|) Z (g|Z!G!(M, Mo) | f)
gedy (lg])

where ¢ Z(Y, Yo) = Zg(Y) is the map into colim(V},).
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Lemma
Let i X - M < Y :j be a concrete homotopy cobordism,

i: (X, X0) = (M, Mp) < (Y, Yp) :j a choice of concrete based homotopy
cobordism, and [f] € Zg(X) and [g] € Zg(Y') be basis elements (so [f], for
example, is an equivalence class in colim(Vx)), then

(llZe(M)|[F]) = |G|"IMI=IXDS™ | e (M, Mo) > G [ Alw(x x0) = £ A Bla(yve) = &)
gedy *([g])

_ ‘G|—(|Mo|-\Xo|) Z (g|Z!G!(M, Mo) | f)
gedy (lg])

where ¢ Z(Y, Yo) = Z(Y) is the map into colim(V},). Equivalently

(LellZe(M)|[F])=|G|" M=% | s (M, Mo) = G | Alu(x x0) = A Blay vy ~ &}
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VO [y P Y(Xy) — V(Xs)

~
~
~
~
~
~
S~

3o TTmmmom 3 colim(V)

Theorem (T.) A
For X a space, the map ¢,, is an isomorphism. Hence, for a homotopically
1-finitely generated space X € x

Zg(X) = C((Grpd(7 (X, X0), G)/ =),

for any choice Xy c X of finite representative subset, where = denotes taking maps
up to natural transformation.
Further,

Zs(X) = C((Grpd(n(X), G)/ =),

27



PR e

Let X be the complement of the embedding of two circles shown. Letting Xo ¢ X
be the subset shown, Grpd(7 (X, Xp), G) = G x G as discussed previously. Since
all objects are mapped to the unique object in G, taking maps up to natural
transformation is means taking maps up to conjugation by elements of G at each
basepoint, hence in this case maps are labelled by pairs of elements of G, up to
simultaneous conjugation, so we have Zg(X) = C((G x G)/G).
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X

Basis elements in Zg(X) are given by equivalence classes [(f1,f,)] where fi,h € G
and [] denotes simultaneous conjugation by the same element of G.
Basis elements in Z¢(Y') are given by elements of g taken up to conjugation,

denoted [g1]. We have
(e ]lZe(M)|[(f,R)]) = \G|_2{a7 b,c,d,ec G|la=fi,b=1f,g ~ ebae‘l}
={ecG|g ~efife '}
_{|G| if g1 ~ fify

0 otherwise.



Let x € X be the basepoint which is in the connected component of X homotopy
equivalent to the punctured disk, and x’ € X some choice of basepoint in the other
connected component. There is a bijection sending a map h € Grpd(7(M, Mp), G)
to a quadruple (A, h(y1), h(72), h(73)) € Grpd(m (M, {x,x"}) x G x G x G, where
h' is the restriction of h to m(M,{x,x"}). Now 7(M, {x,x'}) is the disjoint union
of the groupoids (M, {x}) and w(M,,{x’}) where M; is the path connected
component of M containing x, and M, is the path connected component
containing x’. The group (M, {x'}) is trivial, so there is one unique map into
G. The group m(My, {x}) is isomorphic to the twice punctured disk, which has
fundamental group isomorphic to the free product Z x Z. This isomorphism can be
realised by sending the loop x; to the 1 in the first copy of Z and x, to the 1 in
the second copy of Z. Thus we can label elements in Grpd(7(My, {x}), G) by
elements of G x G where g € (g1, 8) corresponds to the image of x;, and g the
image of x». Hence a map in Grpd(7(M, M), G) is determined by a five tuple
(a,b,c,d,e) € Gx G x G x G xG where a corresponds to the image of x1, b to the
image of x, and ¢, d and e correspond to the images of 71, 72 and 3 respectively.
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