Yorkshire & Midlands Category Theory Seminar 26th meeting

Dialectica completion & dialectica logical principles

based on a joint work with Davide Trotta (University of Pisa) & Valeria de Paiva (Topos Institute)

speaker Matteo Spadetto (University of Leeds)

Gödel's Dialectica Interpretation

Dialectica Interpretation is based on a theory, called System T, in a many-sorted language \mathcal{L} and such that any formula of T is quantifier free. Whenever A is a formula in the language of arithmetic, then we inductively define a formula A^D in the language \mathcal{L} of the form $\exists x. \forall y. A_D$, where A_D is quantifier free. This interpretation satisfies the following:

Theorem

If HA proves a formula A, then T proves $A_D(t, y)$ where t is a sequence of closed terms.

De Paiva's notion of Dialectica category $\text{Dial}(\mathcal{C})$ associated to a category with finite limits \mathcal{C} is the first attempt of internalising Gödel's Dialectica interpretation.

De Paiva's notion of Dialectica category $\text{Dial}(\mathcal{C})$ associated to a category with finite limits \mathcal{C} is the first attempt of internalising Gödel's Dialectica interpretation.

An **object** of Dial(C) is a triple (X, U, α) , which we think of as a formula $(\exists x)(\forall u)\alpha(x, u)$, where α is a subobject of $X \times U$ in C.

うして ふゆ く は く は く む く し く

Dialectica construction

An **arrow** from $(\exists x)(\forall u)\alpha(x, u)$ to $(\exists y)(\forall v)\beta(y, v)$ is a pair $(F: X \longrightarrow Y, f: X \times V \longrightarrow U)$, i.e. a pair (F(x): Y, f(x, v): U) of terms in context satisfying the condition $\alpha(x, f(x, v)) \leq \beta(F(x), v)$ between the reindexed subobjects, where the squares:

(日) (日) (日) (日) (日) (日) (日)

are pullbacks.

Dialectica construction

An **arrow** from $(\exists x)(\forall u)\alpha(x, u)$ to $(\exists y)(\forall v)\beta(y, v)$ is a pair $(F: X \longrightarrow Y, f: X \times V \longrightarrow U)$, i.e. a pair (F(x): Y, f(x, v): U) of terms in context satisfying the condition $\alpha(x, f(x, v)) \leq \beta(F(x), v)$ between the reindexed subobjects, where the squares:

are pullbacks.

The notion of morphism of $\text{Dial}(\mathcal{C})$ is motivated by the definition of the dialectica interpretation for formulas of the form $A \to B$:

$$(A \to B)^D = \exists F. \exists f. \forall x. \forall v. (A_D(x, f(x, v)) \to B_D(F(x), v)).$$

Re-indexing in a cloven and split fibration

Let \mathcal{C} be a category with finite products and let $p: \mathcal{E} \to \mathcal{C}$ be a Grothendieck fibration.

We think of \mathcal{C} as the category of **contexts** associated to a given type theory. Whenever A is an object of \mathcal{C} , then the objects α of \mathcal{E}_A represent **predicates** $\alpha(a)$ in context a: A and the arrows $\alpha \to \beta$ of \mathcal{E}_A represent **proofs** of $\beta(a)$ from $\alpha(a)$ in context a: A. Let $B \xrightarrow{f} A$ be an arrow of \mathcal{C} , i.e. a (finite list of) **terms in context** $b: B \mid f(b): A$. The reindexing $f^*: \mathcal{E}_A \to \mathcal{E}_B$ via f(b) is defined as follows:

Re-indexing in a cloven and split fibration

Let \mathcal{C} be a category with finite products and let $p: \mathcal{E} \to \mathcal{C}$ be a Grothendieck fibration.

We think of \mathcal{C} as the category of **contexts** associated to a given type theory. Whenever A is an object of \mathcal{C} , then the objects α of \mathcal{E}_A represent predicates $\alpha(a)$ in context a: A and the arrows $\alpha \to \beta$ of \mathcal{E}_A represent **proofs** of $\beta(a)$ from $\alpha(a)$ in context a: A. Let $B \xrightarrow{f} A$ be an arrow of \mathcal{C} , i.e. a (finite list of) **terms** in context $b: B \mid f(b): A$. The reindexing $f^*: \mathcal{E}_A \to \mathcal{E}_B$ via f(b) is defined as follows: whenever α is an object of \mathcal{E}_A , there is a cartesian morphism $\alpha(f(b)) \to \alpha$ over f; whenever $\alpha \xrightarrow{g} \alpha'$ is an arrow of \mathcal{E}_A , there is a unique arrow $\alpha(f(b)) \xrightarrow{g(f(b))} \alpha'(f(b))$ of \mathcal{E}_B such that:

$$\begin{array}{c|c} \alpha(f(b)) & \longrightarrow \alpha \\ g(f(b)) & & & \\ & & \\ \alpha'(f(b)) & \longrightarrow \alpha' \\ & & & \\$$

Existential fibrations

A fibration p is **existential** if $pr^* \colon \mathcal{E}_A \to \mathcal{E}_{A \times B}$ has a left adjoint $\exists_{pr} \colon \mathcal{E}_{A \times B} \to \mathcal{E}_A$ for any projection $A \times B \xrightarrow{pr} A$ of the base category (satisfying the BC condition).

Existential fibrations

A fibration p is **existential** if $pr^* \colon \mathcal{E}_A \to \mathcal{E}_{A \times B}$ has a left adjoint $\exists_{pr} \colon \mathcal{E}_{A \times B} \to \mathcal{E}_A$ for any projection $A \times B \xrightarrow{pr} A$ of the base category (satisfying the BC condition).

Let $p: \mathcal{E} \to \mathcal{C}$ be an existential fibration. We say that a predicate $\alpha(i)$ in \mathcal{E}_I is \exists -free if it enjoys the following universal property: for every arrow $A \xrightarrow{f} I$ of \mathcal{C} and every arrow:

 $\alpha(f(a)) \xrightarrow{\varphi} (\exists b \colon B)\beta(a,b)$

of \mathcal{E}_A , where $\beta(a, b)$ is a predicate in $\mathcal{E}_{A \times B}$, there exist a unique arrow $A \xrightarrow{g} B$ and a unique arrow $\alpha(f(a)) \xrightarrow{\varphi'} \beta(a, g(a))$ of \mathcal{E}_A such that:

commutes.

Gödel fibrations

Dually there is a notion of **universal** fibration and \forall -free predicate.

Definition

Let \mathcal{C} be a cartesian closed category and let $p: \mathcal{E} \to \mathcal{C}$ be a fibration. We say that p is a **Gödel fibration** if:

- 1. the fibration p is existential;
- 2. the fibration p has enough \exists -free predicates, that is, for every object A in C and every predicate α in \mathcal{E}_A , there is an \exists -free predicate β in some $\mathcal{E}_{A \times B}$ such that $\alpha \cong (\exists b \colon B)\beta(a, b);$
- 3. the full subfibration p' of \exists -free predicates of p is universal;
- 4. the fibration p' has enough \forall -free predicates.

The \forall -free predicates of p' are called the **quantifier-free** predicates of p.

Gödel fibration

Proposition (Prenex normal form) If a fibration $p: \mathcal{E} \to \mathcal{C}$ is a Gödel fibration, then, for any predicate α in \mathcal{E}_A , it is the case that:

$$\alpha(a) \cong (\exists x \colon X) (\forall y \colon Y) \beta(x, y, a)$$

where β is a quantifier-free predicate in $\mathcal{E}_{X \times Y \times A}$.

Theorem (Skolemisation)

If a fibration $p: \mathcal{E} \to \mathcal{C}$ is a Gödel fibration, then, for any predicate β in $\mathcal{E}_{X \times Y \times A}$, it is the case that:

 $(\forall x \colon X)(\exists y \colon Y)\beta(x, y, a) \cong (\exists f \colon Y^X)(\forall x \colon X)\beta(x, \operatorname{ev}(f, x), a).$

Gödel fibrations

Theorem

If a fibration $p: \mathcal{E} \to \mathcal{C}$ is a Gödel fibration and α and β are quantifier-free predicates in $\mathcal{E}_{A \times X \times U}$ and in $\mathcal{E}_{A \times Y \times V}$ respectively, then an arrow:

$$(\exists x)(\forall u)\alpha(a,x,u) \rightarrow (\exists y)(\forall v)\beta(a,y,v)$$

is a triple:

$$(A \times X \xrightarrow{F} Y, A \times X \times V \xrightarrow{f} U, \varphi)$$

such that:

$$\alpha(a,x,f(a,x,v)) \xrightarrow{\varphi} \beta(a,F(a,x),v)$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

is an arrow in $\mathcal{E}_{A \times X \times V}$

Gödel fibrations

Theorem

If a fibration $p: \mathcal{E} \to \mathcal{C}$ is a Gödel fibration and α and β are quantifier-free predicates in $\mathcal{E}_{A \times X \times U}$ and in $\mathcal{E}_{A \times Y \times V}$ respectively, then an arrow:

$$(\exists x)(\forall u)\alpha(a,x,u) \rightarrow (\exists y)(\forall v)\beta(a,y,v)$$

is a triple:

$$(A \times X \xrightarrow{F} Y, A \times X \times V \xrightarrow{f} U, \varphi)$$

such that:

$$\alpha(a,x,f(a,x,v)) \xrightarrow{\varphi} \beta(a,F(a,x),v)$$

is an arrow in $\mathcal{E}_{A \times X \times V}$

(that means
$$\langle \mathrm{pr}_{A\times X}, f \rangle^* \alpha \xrightarrow{\varphi} (\langle \mathrm{pr}_A, F \rangle \times 1_V)^* \beta$$
).

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

(A presentation of) the dialectica completion

Let $p: \mathcal{E} \to \mathcal{C}$ be a fibration. The **dialectica fibration** Dial(p): Dial $(\mathcal{E}) \to \mathcal{C}$ associated to p is defined as follows:

- ▶ the **objects** of Dial(\mathcal{E}) are quadruples (A, X, U, α) where A, X and U are objects of \mathcal{C} and $\alpha \in \mathcal{E}_{A \times X \times U}$;
- ▶ an **arrow** $(A, X, U, \alpha) \rightarrow (B, Y, V, \beta)$ is a quadruple

$$(A \xrightarrow{g} B, A \times X \xrightarrow{F} Y, A \times X \times V \xrightarrow{f} U, \varphi)$$

where:

$$\alpha(a,x,f(a,x,v)) \xrightarrow{\varphi} \beta(g(a),F(a,x),v)$$

is an arrow in $\mathcal{E}_{A \times X \times V}$.

(A presentation of) the dialectica completion

Let $p: \mathcal{E} \to \mathcal{C}$ be a fibration. The **dialectica fibration** Dial(p): Dial $(\mathcal{E}) \to \mathcal{C}$ associated to p is defined as follows:

- ▶ the **objects** of Dial(\mathcal{E}) are quadruples (A, X, U, α) where A, X and U are objects of \mathcal{C} and $\alpha \in \mathcal{E}_{A \times X \times U}$;
- ▶ an **arrow** $(A, X, U, \alpha) \rightarrow (B, Y, V, \beta)$ is a quadruple

$$(A \xrightarrow{g} B, A \times X \xrightarrow{F} Y, A \times X \times V \xrightarrow{f} U, \varphi)$$

where:

$$\alpha(a,x,f(a,x,v)) \xrightarrow{\varphi} \beta(g(a),F(a,x),v)$$

is an arrow in $\mathcal{E}_{A \times X \times V}$.

Then Dial(p) is the projection on the first component.

Theorem (Hofstra, 2011) There is an isomorphism of fibrations:

 $\operatorname{Dial}(p) \cong \operatorname{Ex}(\operatorname{Un}(p))$

which is natural in p.

We can use this result in order to answer some questions:

- Given a fibration p, when is it the case that there is p' such that Dial(p') = p?
- ▶ In this case, what does p' look like?
- Which logical principles does Dial(p') verify?
- ▶ Which fragment of first-order logic does Dial preserve?

Characterisation of the dialectica completion

Theorem

A fibration $p: \mathcal{E} \to \mathcal{C}$ is a dialectica completion if and only if:

- 1. the fibration p is existential;
- 2. the fibration p has enough \exists -free predicates;
- 3. the full subfibration p' of \exists -free predicates of p is universal;

うして ふゆ く は く は く む く し く

4. the fibration p' has enough \forall -free predicates.

Let p'' be the full subfibration of p' whose predicates are the \forall -free predicates of p' (which me might call quantifier-free) predicates. Then $\text{Dial}(p'') \cong p$.

Characterisation of the dialectica completion

Theorem

A fibration $p: \mathcal{E} \to \mathcal{C}$ is a dialectica completion if and only if:

- 1. the fibration p is existential;
- 2. the fibration p has enough \exists -free predicates;
- 3. the full subfibration p' of \exists -free predicates of p is universal;
- 4. the fibration p' has enough \forall -free predicates.

Let p'' be the full subfibration of p' whose predicates are the \forall -free predicates of p' (which me might call quantifier-free) predicates. Then $\text{Dial}(p'') \cong p$.

Corollary

If C is cartesian closed, then the dialectica completions $\mathcal{E} \to C$ are precisely the Gödel fibrations. Moreover, these are both existential and universal (Hofstra).

Dialectica principles

Suppose that a given fibration $p: \mathcal{E} \to \mathcal{C}$ is both a Heyting fibration and a Gödel fibration. Then:

Theorem

The fibration p satisfies the **Rule of Independence of Premise**, *i.e.* whenever $\beta \in \mathcal{E}_{A \times B}$ and $\alpha \in \mathcal{E}_A$ is a existential-free predicate such that:

$$a:A\mid \top\vdash \alpha(a)\rightarrow (\exists b)\beta(a,b)$$

it is the case that $a : A \mid \top \vdash (\exists b)(\alpha(a) \rightarrow \beta(a, b)).$

Theorem

The fibration p satisfies the following Modified Markov's Rule, *i.e.* whenever $\beta_D \in \mathcal{E}_A$ is a quantifier-free predicate and $\alpha \in \mathcal{E}_{A \times B}$ is an existential-free predicate such that:

$$a: A \mid \top \vdash (\forall b) \alpha(a, b) \to \beta_D(a)$$

it is the case that $a: A \mid \top \vdash (\exists b)(\alpha(a, b) \rightarrow \beta_D(a))$.

Preservation of logical structures

・ロト・(個)・(目)・(目)・ 目・のQの

Preservation of logical structures

From now on, let us assume that the fibres of our fibration are posets. We are interested in statements for Dial of the form:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

From now on, let us assume that the fibres of our fibration are posets. We are interested in statements for Dial of the form:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Proposition

Let $p: \mathcal{E} \to \mathcal{C}$ be a (posetal) fibration. If p has fibred finite conjunctions, then $\operatorname{Ex}(p): \operatorname{Ex}(\mathcal{E}) \to \mathcal{C}$ has fibred finite conjunctions as well.

Preservation of logical structures

Definition

Let C be a distributive category with points. We say that a (posetal) fibration $p: \mathcal{E} \to C$ is **extendable** if it has both left and right adjoints to the reindexings along injections and fibred finite conjunctions and disjunctions.

Theorem

If C is cartesian closed and $p: \mathcal{E} \to C$ is an extendable fibration, then $\text{Dial}(p): \text{Dial}(\mathcal{E}) \to C$ is an existential, universal and extendable fibration.

In particular (follows by Proposition 9.2.1 of Categorical Logic & Type Theory) it is the case that $\text{Dial}(\mathcal{E})$ has finite products and finite coproducts.

Proof relevant setting?

(ロト (個) (E) (E) (E) (の)

Proof relevant setting?

Definition (Sean Moss, PhD thesis)

Let \mathcal{C} and \mathcal{D} be functors and let $F: \mathcal{C} \longleftarrow \mathcal{D}$ and $G: \mathcal{C} \longrightarrow \mathcal{D}$ be functors. We say that the pair (F, G) is a **right-weak adjunction** of the categories \mathcal{C} and \mathcal{D} if there is a natural transformation $\mathcal{C}(F-, -) \xrightarrow{(-)^{\flat}} \mathcal{D}(-, G-)$ together with a choice of a section $(-)^{\sharp}$ of every (D, C)-component of $(-)^{\flat}$, being C an object of \mathcal{C} and D an object of \mathcal{D} . We also say that F is **right-weakly left adjoint** to G and that G is **right-weakly right adjoint** to F.

Definition

Let C be a distributive category with points. We say that a fibration $p: \mathcal{E} \to C$ is **weakly extendable** if it has right-weakly left and left-weakly right adjoints to the reindexings along injections and if its fibres are weakly finitely complete and weakly finitely cocomplete.

Proof-relevant setting?

Theorem

If C is cartesian closed and $p: \mathcal{E} \to C$ is a weakly extendable fibration, then $\text{Dial}(p): \text{Dial}(\mathcal{E}) \to C$ is an existential, universal and weakly extendable fibration.

In particular it is the case that $\text{Dial}(\mathcal{E})$ has weak finite products and weak finite coproducts.

うして ふゆ く は く は く む く し く

Theorem

If C is cartesian closed and $p: \mathcal{E} \to C$ is a weakly extendable fibration, then $\text{Dial}(p): \text{Dial}(\mathcal{E}) \to C$ is an existential, universal and weakly extendable fibration.

In particular it is the case that $Dial(\mathcal{E})$ has weak finite products and weak finite coproducts.

Moreover, if p has fibred (strong) finite products and (strong) right adjoints to the reindexings along the injections, then the fibration Dial(p) has fibred finite products and, hence, its total category $\text{Dial}(\mathcal{E})$ has finite products.

うして ふゆ く は く は く む く し く

References

- Trotta, Spadetto, de Paiva. *The Gödel fibration*. MFCS 2021. LIPIcs link here. arXiv 2104.14021 (extended version).
- Trotta, Spadetto, de Paiva. *Dialectica logical principles*. LFCS 2022. Springer link here. arXiv 2109.08064.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

References

- F. Lawvere. 1969. Adjointness in foundations. Dialectica, 23:281–296.
- M. Hyland, P. Johnstone and A. Pitts. 1980. *Tripos theory*. Math. Proc. Camb. Phil. Soc., 88:205–232.
- V. de Paiva. 1991. *The Dialectica categories*. PhD Thesis, University of Cambridge.
- M. Hyland. 2002. *Proof theory in the abstract.* Annals of Pure and Applied Logic, 114:43–78.
- P. Hofstra. 2011. The Dialectica monad and its cousins. Models, logics, and higherdimensional categories: a tribute to the work of Mihály Makkai, 53:107-139
- D. Trotta and M. E. Maietti. 2021. Generalised existential completions and their regular and exact completions. Preprint.