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Quantitative semantics of linear logic

A ⇒ B = !A ( B

intuitionistic
implication

exponential
modality

linear
implication

Girard (1980’s):
I Type A: vector space RJAK

I Type A( B: vector space RJAK×JBK

I Linear program P : A( B: a matrix JPK ∈ RJAK×JBK or a linear
map JPK : RJAK → RJBK

I Interaction: composition of matrices
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Controlling non-determinism

I Type A⇒ B: vector space RMfin(JAK)×JBK

I Program P : A⇒ B: analytic map JPK : RJAK → RJBK given by a
power series

(JPK(x))b =
∑

m∈Mfin(JAK)

JPK(m,b) · xm

Issues
I Functional types lead to infinite dimensional vector spaces
I The sums need not to converge

Finiteness spaces are a way to control non-determinism by enforcing finite
interactions.
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Orthogonality on models of computation

C: fixed model of linear logic with monoidal units 1,⊥.

1 JAK ⊥
x y

closed program
of type A

counter-program
or environment

I Orthogonality relation:

⊥A ⊆ C(1, JAK)× C(JAK,⊥)

I Well studied for 1-categories (Hyland-Schalk): allows for more
control on interactions between programs and environments.
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Relational model reminder

Definition
The category of relations (denoted Rel) is defined by

objects sets A,B, . . .

morphisms binary relations Rel(A,B) := P(A× B)

identity idA := {(a, a) | a ∈ A} ∈ Rel(A,A)

composition for R ∈ Rel(A,B) and S ∈ Rel(B,C), S ◦ R ⊆ A× C is
defined by:
S ◦ R := {(a, c) | ∃b ∈ B, (a, b) ∈ R and (b, c) ∈ S}

or equivalently (S ◦ R)(a,c) =
∨

b∈B
R(a,b) ∧ S(b,c)
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Orthogonality on the Relational Model

Let x ∈ Rel(1,A) ∼= P(A) and y ∈ Rel(A, 1) ∼= P(A):

I Coherence spaces (Girard):

x ⊥A y :⇔ |x ∩ y | ≤ 1

stable semantics (minimal part of the input needed to compute a
given output)

I Totality spaces (Loader):

x ⊥A y :⇔ |x ∩ y | = 1

every computation yields exactly one result
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Relational Finiteness Spaces

Ehrhard: for x ∈ Rel(1,A) ∼= P(A) and y ∈ Rel(A, 1) ∼= P(A),

x ⊥ y :⇔ x ∩ y is finite

For a countable set A and F ⊆ P(A), define

F⊥ := {y ∈ P(A) | ∀x ∈ F , x ⊥ y}

 Galois connection on the poset P(P(A)) ordered by inclusion:

P(P(A)) P(P(A))

(−)⊥

(−)⊥
⊥
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Relational Finiteness Spaces

Definition (Ehrhard)
A relational finiteness space is a pair (A,F(A)) where A is a countable
set and F(A) is a subset of P(A) verifying F(A) = F(A)⊥⊥.

Elements of F(A) are called finitary subsets as they “behave” like finite
subsets:
I closure under inclusion
I closure under finite unions

Pfin(A)
smallest finiteness

structure

⊆ F(A) ⊆ P(A)
largest finiteness

structure
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Relational Finiteness Spaces

Definition
The category FinRel has objects finiteness spaces and morphisms are
relations that preserve the finiteness structure.

For finiteness spaces (A,F(A)) and (B,F(B)), a relation R ⊆ A× B is
in FinRel if it verifies:
I forward preservation: for all x ∈ F(A), R? · x ∈ F(B)
I backward preservation: for all y ∈ F(B)⊥, R? · y ∈ F(A)⊥

P(A) P(B)

F(A) F(B)

R? P(B) P(A)

F(B)⊥ F(A)⊥

R?

We obtain a model of finite non-determinism with iteration but no
fixpoint.
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Combinatorial Species Reminder
Count the number of ways combinatorial structures can be formed

I Lists or linear orderings

1 · x0

0! + 1 · x1

1! + 2 · x2

2! + 6 · x3

3! + . . . =
+∞∑
n=0

xn

I Binary rooted trees

1 · x0

0! + 1 · x1

1! + 4 · x2

2! + 30 · x3

3! + . . . =
+∞∑
n=0

Cn · xn
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Combinatorial Species Reminder

category B objects: finite sets, morphisms: bijections

Definition (Joyal 1981)
A species of structure is a functor F : B→ Set.
I Given a finite set of labels U ∈ B, an element x ∈ F [U ] is called a

F -structure on U
I Given a bijection σ : U ∼−→ V ∈ B, the bijection F [σ] : F [U ] ∼−→ F [V]

is called the transport of F -structures along σ

U = {1, 2, 3, 4, 5}

4 5

2

1

3

∼−→
σ

∼−→
F (σ)

V = {a, b, c, d , e}

a b

c

d

e
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Generalized species

I Fiore, Gambino, Hyland and Winskel 2008: generalized species as a
model of differential linear logic

!JAK −→ ĴBK

free symmetric strict
monoidal completion

presheaves over JBK

I A (1, 1)-species of structure corresponds to a combinatorial species
of structure

F : ! 1→ 1̂ ⇔ F : B→ Set
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From Relations to Profunctors

R ⊆ A× B ⇔ A function−−−−→ P(B) ⇔ A× B function−−−−→ 2

Definition
Let A and B be two categories, a profunctor from A to B is a functor

P : A→ B̂ (also denoted P : A −7→ B)

P : A −7→ B ⇔ A functor−−−−→ B̂ ⇔ A× Bop functor−−−−→ Set

Profunctor composition being not strictly associative, we need to work in
the setting of bicategories
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Bicategory of Profunctors

I Objects: small categories A,B, . . .

I 1-cells: profunctors F : A −7→ B

I 2-cells: natural transformations

I Identity: idA : A→ Â is the Yoneda embedding a 7→ A(−, a)

I Composition: for F : A −7→ B and G : B −7→ C,

(G ◦ F )(a, c) =
∫ b∈B

F (a, b)× G(b, c)

B

A

Ĉ

B̂

⇓

G

F Lany(G)
y

14/25



Linear Logic Structure

For a small category A, define the category !A:
I objects: finite sequences 〈a1, . . . , an〉 of objects of A.
I morphisms: pairs (σ, (fi )i∈n) : 〈a1, . . . , an〉 → 〈b1, . . . , bn〉 of a

permutation σ ∈ Sn and a finite sequence of morphisms
fi : ai → bσ(i) in A.

a1 a2 . . . ai . . . an

bσ(2) bσ(n) . . . bσ(1) . . . bσ(i)

f1f2 fi
fn

Definition
Given A and B two small categories, an (A,B)-generalized species of
structures is a profunctor F : !A −7→ B.
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Generalized species and analytic functors
What is the series counterpart of generalized species?

Definition (Fiore et al. 2008)
For small categories A and B, a functor P : Â→ B̂ is analytic if there
exists a generalized species F : !A −7→ B such that P ∼= LansF

!A B̂

Â

⇓

F

Lans(F )s

where s : 〈a1, . . . an〉 7→
n∑

i=1
yA(ai ).

I Example: F : !A −7→ A generalized species of binary trees

LansF : Â→ Â

(X , a) 7→
∑

n
Cn × X n(a)
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Setting for Finiteness Species

We work with locally finite categories (homsets are finite)

I The yoneda embedding is valued in finite presheaves i.e.
yA : A→ [Aop,FinSet].

I Finitely presentable presheaves [Aop,Set]fp can be seen as a
subcategory of finite presheaves [Aop,FinSet].
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Orthogonality

profunctors in Prof(1,A) ⇔ presheaves X ∈ Â

profunctors in Prof(A, 1) ⇔ co-presheaves Y ∈ Âop

1 A 1
X Y

Orthogonality relation
For X ∈ Prof(1,A) and Y ∈ Prof(A, 1),

X ⊥ Y :⇔ Y ◦ X =
∫ a∈A

X (a)× Y (a) ∈ FinSet
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Categorical finiteness structures

Given a subcategory F ↪→ [Aop,FinSet], let F⊥ be the full subcategory
of [A,FinSet] whose object set is

{Y : A→ FinSet | ∀X ∈ F ,X ⊥ Y }

Definition
A categorical finiteness structure is a pair (A,F(A)) of a locally finite
category A and a full subcategory of F(A) ↪→ [Aop,FinSet] verifying
F(A) ∼= (F(A))⊥⊥.
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Finiteness presheaves

Objects of F(A) “behave” like finitely presentable objects:

I closure under retractions: if X ′ is a retract of X ∈ F(A), then
X ′ ∈ F(A).

I closure under finite colimits: a finite colimit of elements of F(A) is
in F(A).

[Aop,Set]fp
smallest finiteness

structure

↪→ F(A) ↪→ [Aop,FinSet]
largest finiteness

structure
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Finiteness Profuntors

Definition
For finiteness structures (A,F(A)), (B,F(B)), P : A× Bop → FinSet is
a finiteness profunctor if LanyA (P) can be factored as follows:

Â B̂

F(A) F(B)

LanyA (P)

Denote by FinProf the bicategory of finiteness structures, finiteness
profunctors and natural transformations.
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FinProf as a Model of Linear Logic

Definition
For a finiteness structure (A,FA), we define !(A,F(A)) := (!A,F(!A))
where F !A := {X ! | X ∈ FA}⊥⊥.

For a finite presheaf X : Aop → FinSet, its lifting X ! : (!A)op → FinSet
is given by

X ! : 〈a1, . . . , an〉 ∈ !A 7→
n∏

i=1
X (ai )

is also a finite presheaf.

Theorem
The co-Kleisli bicategory FinProf ! is cartesian closed.
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Examples

I Morphisms !(1,F1) −7→ (1,F(1)) are species whose analytic functor
is polynomial:
• Analytic functor with finite support Set→ Set

P : X 7→ 1 +X + X 2/S2 + · · ·+ X n/Sn

• Analytic functor (but not in the finiteness model) Set→ Set

L : X 7→ 1 +X + X 2 + · · ·+ X n + . . . ∼=
∑
n∈N

X n

⇒ no fixpoints (L ∼= 1 +X · L)
I In higher types, we can have infinite support:

!(!(1,F1)( (1,F1)) −7→ 1
“E 7→ E (0)”
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Conclusion and next steps

finite
computation

FinProf Prof

FinRel Rel

U

U

I Categorify the orthogonality construction

I Generalize to enriched species (in particular for species enriched over
vector spaces to remain in a finite dimensional setting).

I Replace finite presentability by other classes of objects
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Thank you for your attention
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