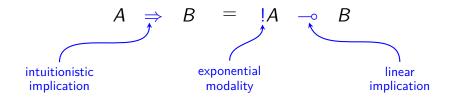
Finiteness species of structures Yamcats 26

Zeinab GALAL

January 10th, 2022

Quantitative semantics of linear logic



Girard (1980's):

• Type
$$A \multimap B$$
: vector space $\mathcal{R}^{\llbracket A \rrbracket imes \llbracket B \rrbracket}$

Linear program P : A → B: a matrix [[P]] ∈ R^{[[A]]×[B]]} or a linear map [[P]] : R^[A] → R^[B]

Interaction: composition of matrices

Controlling non-determinism

• Type $A \Rightarrow B$: vector space $\mathcal{R}^{\mathcal{M}_{fin}(\llbracket A \rrbracket) \times \llbracket B \rrbracket}$

Program P : A ⇒ B: analytic map [[P]] : R^[A] → R^[B] given by a power series

$$(\llbracket P \rrbracket(x))_b = \sum_{m \in \mathcal{M}_{fin}(\llbracket A \rrbracket)} \llbracket P \rrbracket_{(m,b)} \cdot x^m$$

Issues

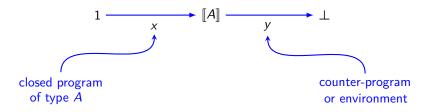
Functional types lead to infinite dimensional vector spaces

The sums need not to converge

Finiteness spaces are a way to control non-determinism by enforcing finite interactions.

Orthogonality on models of computation

 ${\bf C}:$ fixed model of linear logic with monoidal units $1, \bot.$



Orthogonality relation:

$$\perp_{A} \subseteq \mathsf{C}(1, \llbracket A \rrbracket) \times \mathsf{C}(\llbracket A \rrbracket, \bot)$$

Well studied for 1-categories (Hyland-Schalk): allows for more control on interactions between programs and environments.

Relational model reminder

Definition

The *category of relations* (denoted **Rel**) is defined by objects sets *A*, *B*, ...

morphisms binary relations $\operatorname{Rel}(A, B) := \mathcal{P}(A \times B)$

identity $id_A := \{(a, a) \mid a \in A\} \in \mathbf{Rel}(A, A)$

composition for $\mathcal{R} \in \mathbf{Rel}(A, B)$ and $\mathcal{S} \in \mathbf{Rel}(B, C)$, $\mathcal{S} \circ \mathcal{R} \subseteq A \times C$ is defined by:

 $\mathcal{S} \circ \mathcal{R} := \{(a,c) \mid \exists b \in B, (a,b) \in \mathcal{R} \text{ and } (b,c) \in \mathcal{S}\}$

or equivalently
$$(\mathcal{S} \circ \mathcal{R})_{(a,c)} = \bigvee_{b \in B} \mathcal{R}_{(a,b)} \wedge \mathcal{S}_{(b,c)}$$

Orthogonality on the Relational Model

Let $x \in \mathbf{Rel}(1, A) \cong \mathcal{P}(A)$ and $y \in \mathbf{Rel}(A, 1) \cong \mathcal{P}(A)$:

Coherence spaces (Girard):

$$x \perp_A y \quad :\Leftrightarrow \quad |x \cap y| \leq 1$$

stable semantics (minimal part of the input needed to compute a given output)

Totality spaces (Loader):

$$x \perp_A y$$
 : \Leftrightarrow $|x \cap y| = 1$

every computation yields exactly one result

Relational Finiteness Spaces

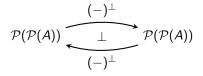
Ehrhard: for $x \in \operatorname{Rel}(1, A) \cong \mathcal{P}(A)$ and $y \in \operatorname{Rel}(A, 1) \cong \mathcal{P}(A)$,

 $x \perp y :\Leftrightarrow x \cap y$ is finite

For a countable set A and $\mathcal{F} \subseteq \mathcal{P}(A)$, define

$$\mathcal{F}^{\perp} := \{ y \in \mathcal{P}(A) \mid \forall x \in \mathcal{F}, x \perp y \}$$

 \rightsquigarrow Galois connection on the poset $\mathcal{P}(\mathcal{P}(A))$ ordered by inclusion:



Definition (Ehrhard)

A relational *finiteness space* is a pair $(A, \mathcal{F}(A))$ where A is a countable set and $\mathcal{F}(A)$ is a subset of $\mathcal{P}(A)$ verifying $\mathcal{F}(A) = \mathcal{F}(A)^{\perp \perp}$.

Elements of $\mathcal{F}(A)$ are called *finitary subsets* as they "behave" like finite subsets:

- closure under inclusion
- closure under finite unions

$$\begin{array}{cccc} \mathcal{P}_{fin}(A) & \subseteq & \mathcal{F}(A) & \subseteq & \mathcal{P}(A) \\ \text{smallest finiteness} & & & & & \\ \text{structure} & & & & & \\ \end{array}$$

Definition

The category **FinRel** has objects finiteness spaces and morphisms are relations that preserve the finiteness structure.

For finiteness spaces $(A, \mathcal{F}(A))$ and $(B, \mathcal{F}(B))$, a relation $R \subseteq A \times B$ is in **FinRel** if it verifies:

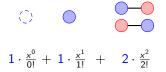
forward preservation: for all x ∈ F(A), R_{*} · x ∈ F(B)
 backward preservation: for all y ∈ F(B)[⊥], R^{*} · y ∈ F(A)[⊥]

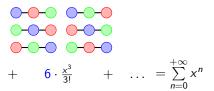
We obtain a model of finite non-determinism with iteration but no fixpoint.

Combinatorial Species Reminder

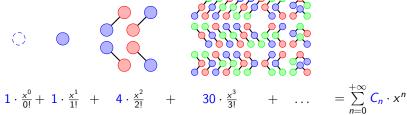
Count the number of ways combinatorial structures can be formed

Lists or linear orderings





Binary rooted trees



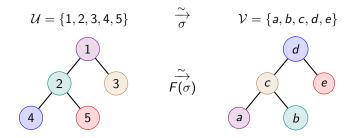
Combinatorial Species Reminder

category ${\mathbb B}\,$ objects: finite sets, morphisms: bijections

Definition (Joyal 1981)

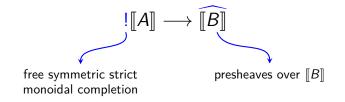
A species of structure is a functor $F : \mathbb{B} \to \mathbf{Set}$.

- ▶ Given a finite set of *labels* $U \in \mathbb{B}$, an element $x \in F[U]$ is called a *F*-structure on U
- Given a bijection $\sigma : \mathcal{U} \xrightarrow{\sim} \mathcal{V} \in \mathbb{B}$, the bijection $F[\sigma] : F[\mathcal{U}] \xrightarrow{\sim} F[\mathcal{V}]$ is called the *transport of F-structures along* σ



Generalized species

 Fiore, Gambino, Hyland and Winskel 2008: generalized species as a model of differential linear logic



A (1, 1)-species of structure corresponds to a combinatorial species of structure

$$F: ! \mathbf{1} \to \widehat{\mathbf{1}} \qquad \Leftrightarrow \qquad F: \mathbb{B} \to \mathbf{Set}$$

From Relations to Profunctors

$$R \subseteq A \times B \quad \Leftrightarrow \quad A \xrightarrow{function} \mathcal{P}(B) \quad \Leftrightarrow \quad A \times B \xrightarrow{function} 2$$

Definition

Let **A** and **B** be two categories, a *profunctor* from **A** to **B** is a functor

$$P : \mathbf{A} \to \widehat{\mathbf{B}}$$
 (also denoted $P : \mathbf{A} \to \mathbf{B}$)

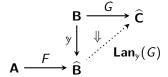
$$P: \mathbf{A} \to \mathbf{B} \quad \Leftrightarrow \quad \mathbf{A} \xrightarrow{functor} \widehat{\mathbf{B}} \quad \Leftrightarrow \quad \mathbf{A} \times \mathbf{B}^{\mathrm{op}} \xrightarrow{functor} \mathbf{Set}$$

Profunctor composition being not strictly associative, we need to work in the setting of bicategories

Bicategory of Profunctors

- Objects: small categories A, B, ...
- ▶ 1-cells: profunctors $F : \mathbf{A} \rightarrow \mathbf{B}$
- 2-cells: natural transformations
- ▶ Identity: $id_A : A \to \widehat{A}$ is the Yoneda embedding $a \mapsto A(-,a)$
- **Composition:** for $F : \mathbf{A} \to \mathbf{B}$ and $G : \mathbf{B} \to \mathbf{C}$,

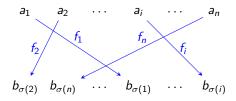
$$(G \circ F)(a,c) = \int^{b \in \mathbf{B}} F(a,b) \times G(b,c)$$



Linear Logic Structure

For a small category **A**, define the category **!A**:

- objects: finite sequences $\langle a_1, \ldots, a_n \rangle$ of objects of **A**.
- Morphisms: pairs (σ, (f_i)_{i∈n}) : ⟨a₁,..., a_n⟩ → ⟨b₁,..., b_n⟩ of a permutation σ ∈ 𝔅_n and a finite sequence of morphisms f_i : a_i → b_{σ(i)} in A.



Definition

Given **A** and **B** two small categories, an (\mathbf{A}, \mathbf{B}) -generalized species of structures is a profunctor $F : !\mathbf{A} \to \mathbf{B}$.

Generalized species and analytic functors

What is the series counterpart of generalized species?

Definition (Fiore et al. 2008)

For small categories **A** and **B**, a functor $P : \widehat{\mathbf{A}} \to \widehat{\mathbf{B}}$ is *analytic* if there exists a generalized species $F : !\mathbf{A} \to \mathbf{B}$ such that $P \cong \mathbf{Lan}_s F$

$$|\mathbf{A} \xrightarrow{F} \widehat{\mathbf{B}} \\ \overbrace{s}^{\Downarrow} \widehat{\mathbf{A}} \xrightarrow{F} \mathbf{Lan}_{s}(F)$$

where $s : \langle a_{1}, \dots, a_{n} \rangle \mapsto \sum_{i=1}^{n} \mathbb{Y}_{\mathbf{A}}(a_{i}).$

Example: $F : !A \rightarrow A$ generalized species of binary trees

$$\mathsf{Lan}_{s}F:\widehat{\mathbf{A}}
ightarrow \widehat{\mathbf{A}}$$
 $(X,a)\mapsto \sum_{n}C_{n} imes X^{n}(a)$

We work with locally finite categories (homsets are finite)

- ▶ The yoneda embedding is valued in finite presheaves i.e. $y_A : A \rightarrow [A^{op}, FinSet]$.
- Finitely presentable presheaves [A^{op}, Set]_{fp} can be seen as a subcategory of finite presheaves [A^{op}, FinSet].

profunctors in $Prof(1, A) \Leftrightarrow presheaves X \in \widehat{A}$ profunctors in $Prof(A, 1) \Leftrightarrow co-presheaves Y \in \widehat{A^{op}}$



Orthogonality relation

For $X \in \mathbf{Prof}(1, \mathbf{A})$ and $Y \in \mathbf{Prof}(\mathbf{A}, 1)$,

$$X \perp Y$$
 : \Leftrightarrow $Y \circ X = \int^{a \in \mathbf{A}} X(a) \times Y(a) \in \mathbf{FinSet}$

Given a subcategory $\mathcal{F} \hookrightarrow [\mathbf{A}^{op}, \mathbf{FinSet}]$, let \mathcal{F}^{\perp} be the full subcategory of $[\mathbf{A}, \mathbf{FinSet}]$ whose object set is

$$\{Y : \mathbf{A} \to \mathbf{FinSet} \mid \forall X \in \mathcal{F}, X \perp Y\}$$

Definition

A categorical finiteness structure is a pair $(\mathbf{A}, \mathcal{F}(\mathbf{A}))$ of a locally finite category \mathbf{A} and a full subcategory of $\mathcal{F}(\mathbf{A}) \hookrightarrow [\mathbf{A}^{op}, \mathbf{FinSet}]$ verifying $\mathcal{F}(\mathbf{A}) \cong (\mathcal{F}(\mathbf{A}))^{\perp \perp}$.

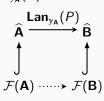
Objects of $\mathcal{F}(\mathbf{A})$ "behave" like finitely presentable objects:

- ▶ closure under retractions: if X' is a retract of $X \in \mathcal{F}(\mathbf{A})$, then $X' \in \mathcal{F}(\mathbf{A})$.
- closure under finite colimits: a finite colimit of elements of *F*(A) is in *F*(A).

$[\mathbf{A}^{op}, \mathbf{Set}]_{fp}$	\hookrightarrow	$\mathcal{F}(A)$	\hookrightarrow	[A ^{op} , FinSet]
smallest finiteness				largest finiteness
structure				structure

Definition

For finiteness structures $(\mathbf{A}, \mathcal{F}(\mathbf{A}))$, $(\mathbf{B}, \mathcal{F}(\mathbf{B}))$, $P : \mathbf{A} \times \mathbf{B}^{op} \to \mathbf{FinSet}$ is a finiteness profunctor if $\mathbf{Lan}_{\mathbf{YA}}(P)$ can be factored as follows:



Denote by **FinProf** the bicategory of finiteness structures, finiteness profunctors and natural transformations.

Definition

For a finiteness structure $(\mathbf{A}, \mathcal{F}\mathbf{A})$, we define $!(\mathbf{A}, \mathcal{F}(\mathbf{A})) := (!\mathbf{A}, \mathcal{F}(!\mathbf{A}))$ where $\mathcal{F}!\mathbf{A} := \{X^{!} \mid X \in \mathcal{F}\mathbf{A}\}^{\perp \perp}$.

For a finite presheaf $X : \mathbf{A}^{op} \to \mathbf{FinSet}$, its lifting $X^! : (!\mathbf{A})^{op} \to \mathbf{FinSet}$ is given by

$$X^!:\langle a_1,\ldots,a_n
angle\in !\mathbf{A}\mapsto \prod_{i=1}^n X(a_i)$$

is also a finite presheaf.

Theorem

The co-Kleisli bicategory **FinProf**₁ is cartesian closed.

Examples

- Morphisms !(1, *F*1) → (1, *F*(1)) are species whose analytic functor is polynomial:
 - Analytic functor with finite support $\textbf{Set} \rightarrow \textbf{Set}$

$$P: X \mapsto \mathbf{1} + X + X^2/\mathfrak{S}_2 + \cdots + X^n/\mathfrak{S}_n$$

• Analytic functor (but not in the finiteness model) $\textbf{Set} \rightarrow \textbf{Set}$

$$L: X \mapsto \mathbf{1} + X + X^2 + \dots + X^n + \dots \cong \sum_{n \in \mathbb{N}} X^n$$

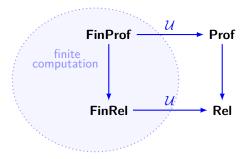
 \Rightarrow no fixpoints ($L \cong \mathbf{1} + X \cdot L$)

In higher types, we can have infinite support:

$$!(!(\mathbf{1},\mathcal{F}\mathbf{1})\multimap(\mathbf{1},\mathcal{F}\mathbf{1})) \rightarrow \mathbf{1}$$

" $E\mapsto E(0)$ "

Conclusion and next steps



- Categorify the orthogonality construction
- Generalize to enriched species (in particular for species enriched over vector spaces to remain in a finite dimensional setting).
- Replace finite presentability by other classes of objects

Thank you for your attention