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1 Introduction

Consider two populations of measurements in p-dimensional Euclidean space. A standard mul-

tivariate normal model allows different mean vectors but a common covariance matrix for the

two groups, Np(µ1,Σ) and Np(µ2,Σ). This model is the foundation for much multivariate

analysis, including the multivariate analysis of variance (MANOVA), Hotelling’s T 2 test and

Fisher’s linear discriminant rule (e.g. Mardia et al., 1979). There is some mild simplification to

the theory under an assumption of isotropy, Σ ∝ Ip, but in most applications Σ is not restricted

in this way. The purpose of this paper is to develop similar models for spherical data.

2 The Fisher Bingham distribution on the sphere

The unit sphere S2 in R
3 is defined by {x = (x1, x2, x3)

T : x2
1 + x2

2 + x2
3 = 1}. An analogue

on S2 of the bivariate normal distribution on R
2 is the FB5 distribution of Kent (1982). In

standardized form the probability density function takes the form

f(x;κ, β, I) =
1

c(β, κ)
exp{κx3 + β(x2

1 − x2
2)}, (1)

where 0 ≤ 2β ≤ κ. For the standardized version, the modal direction is the north pole (0, 0, 1)T ,

and the major and minor axis of the covariance structure lie on the x1 and x2 axes, respectively.

The general form of the distribution, denoted FB5(κ, β,Γ), where Γ = is a 3×3 rotation matrix,

is obtained from the standardized form by transforming x to y = Γx. The third column of Γ
gives the modal direction of y. If P = I − γ(3)γ

T
(3) denote projection onto the plane perpen-

dicular to γ(3), then the major and minor axes of ellipse determined by the rank 2 covariance

matrix E{Pyy
TP} are given by the first two columns of Γ.

The special case β = 0 reduces to the Fisher distribution on the sphere and corresponds to the

isotropic bivariate normal distribution in R
2. Discrimination between two Fisher distributions

with equal concentration is much simpler than for the FB5 distribution (see Section 4) and does

not require the complications of parallel transport that we describe next.

3 Parallel transport

Since a covariance structure lies in the tangent plane at a mean direction, it is not possible for

covariance structures at different mean directions to be directly compared with one another.

Instead the concept of parallel transport is needed to bring the tangent spaces together. This

concept is most easily explained by letting one mean direction be the north pole, µ0 = (0, 0, 1)T

and the other direction be an arbitrary point on the sphere

µ1 = (sin θ1 cosφ1, sin θ1 sinφ1, cos θ1)
T , (2)

not lying at the north or south pole, where 0 < θ1 < π denotes the colatitude and φ1 ∈ [0, 2π)
denotes the longitude.
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For i, j,= 1, 2, 3, i 6= j, and an angle ψ, let Rij(ψ) denote the 3 × 3 rotation matrix with

nonzero elements rii = rjj = cosψ, rij = −rji = sinψ, and with the remaining diagonal

element equal to one. Then construct the rotation matrix

R = R21(φ1)R13(θ1)R12(φ1), (3)

and let τ = (− sinφ1, cosφ1, 0)T . It is easy to check that Rµ0 = µ1, and Rτ = τ , these two

conditions determining R. Since τ
T
µ0 = 0, τ T

µ1 = 0, R represents rotation about the axis τ

perpendicular to the plane determined by µ0 and µ1, and R rotates µ0 to µ1. It can be checked

that RT = R21(φ1 + π)R13(θ1)R12(φ1 + π) represents the reverse rotation, taking µ1 to µ0.

We are now ready to set out the parameterize the two-group model in three steps.

(a) Start with a standardized FB5(κ, β, I) distribution as in equation (1), with modal direction

at the north pole and principal axes equal to the first two coordinate axes.

(b) Consider a vector µ1 in equation (2) with polar coordinates (θ1, φ1), restricted to lie in

the northern hemisphere, so that the colatitude satisfies 0 < θ1 < π/2. Construct two new

distributions by parallel transport with modal directions equi-spaced about the north pole

with polar coordinates (θ1, φ1) and (θ1, φ1 + π): the two distributions are FB5(κ, β,R)
and FB5(κ, β,R

T ), with mean directions

µ1 = Rµ0 and µ2 = RT
µ0. (4)

The north pole µ0 will be called the “central mean direction” because it points towards

the vector average of the mean directions of the two groups.

(c) Lastly, using a general rotation matrix Ω, shift the central mean direction to an arbitrary

point on the sphere, and allow the principal axes at the central mean direction to have an

arbitrary orientation, yielding the two distributions FB5(κ, β,ΩR) and FB5(κ, β,ΩR
T ).

It is instructive to compare this model with the Euclidean case. For the bivariate normal

model there are two parameters for each of two mean vectors and 3 parameters needed to specify

the common covariance matrix, making a total of 7 parameters. For the spherical model there

are two concentration parameters (κ and β), two angular parameters (θ1 and φ1) for the parallel

transport matrix R in (3) used to construct the two means in standardized cooordinates in (4),

and 3 parameters to specify Ω, again making 7 parameters. Indeed it can be shown that when

these two distributions are concentrated on a small part of the sphere, the two-group FB5 model

projected onto the tangent space of the sphere closely matches the bivariate normal model.

4 Estimation, testing and discrimination

Here we give a simple method of moment estimation, which can be used both as an estimation

method in its own right, or as a starting point for ML estimation. The data take the form of unit

vectors y11, . . . ,y1n1
from group 1 and y21, . . . ,y2n2

from group 2.

The fitting procedure can be sketched as follows. Rotate the whole dataset so that the sample

central mean direction is at the north pole. Then use parallel transport on each group separately

to make it centered at the north pole. Using moment estimation on the pooled dataset (Kent,

1982), fit an FB5 distribution. A final rotation about the north pole is needed to ensure that the

major and minor axes of fitted FB5 distribution lie along the first two coordinate axes. After
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Figure 1: Azimuthal equidistant projection of the sphere in coordinates (θ cos φ, θ sinφ), with the north

pole given by the open circle at the center of the figure and the south pole by the circle at radius π.

The elongated “S”-shaped curve through the north pole gives the discriminant boundary between two

FB5 distributions with parameters θ1 = π/6, φ1 = π/4, 2β/κ = 0.5 and represented by the two

ellipses centered at the black dots. The straight line through the north pole is the great circle discriminant

boundary for two Fisher distributions, relevant when 2β/κ = 0.

this fitting procedure, the data have been transformed into the standardized form of part (b) in

Section 3.

The first task when presented with two groups of data is to test H0 : µ1 = µ2, i.e. that

the two mean directions are equal. Ignoring the β parameter (i.e. treating it as 0), yields the

standard Watson-Williams test from directional data analysis to compare the mean directions of

two Fisher distributions (e.g. Mardia and Jupp, 2000, p. 219). By incorporating the estimate of

β, it should be possible to get more faithful size and higher power, at least for large samples.

Once the difference between the two groups has been established, it makes sense to consider

discrimination. Here we limit attention to the maximum likelihood discriminant rule. The

boundary between the two regions on the sphere is given by a curve on the sphere where the

ratio of two probability densities equals 1.

In the standardized version of the problem, the boundary is simple if φ1 = 0, π/2, π or 3π/2,

so that the difference in group means is aligned with one of the principal axes. In any of these
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cases the boundary simplifies to the great circle passing through the central mode at the north

pole and perpendicular to the great circle between µ1 and µ2. This boundary is also applicable

in the simplified case β = 0, under which FB5 reduces to the Fisher distribution.

However, for nonspecial values of φ1 when β 6= 0, the boundary is messy to describe analyt-

ically. An illustration is given in Figure 1 where the actual boundary (the elongated “S”-shaped

curve passing through the north pole), calculated numerically, is compared to the corresponding

great circle boundary (the straight line passing through the north pole) under the Fisher model

(i.e. taking β = 0). This example has been chosen to give a situation where the difference

between the two boundaries is substantial.

5 Discussion

As far as we are aware, the first use of parallel transport on the sphere for a statistical problem

was given in Jupp and Kent (1987) for a nonparametric smoothing problem, where it was de-

scribed in terms of “unrolling” a path on the sphere. Subsequent developments have included

applications to regression problems and extensions to more complicated manifolds (e.g., Le,

2003; Kume et al., 2007; Pauley, 2012; and Su et al., 2012). Mardia et al. (2004) have used par-

allel transport investigate a problem involving edgels in landmark-based planar shape analysis.

The current paper is somewhat different in emphasis because it involves the parallel transport

of distributions.
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