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1 Introduction

Many problems in directional statistics utilise probability distributions defined over manifolds

embedded in Euclidean space, such as circles, spheres, tori and Stiefel manifolds. Unfortu-

nately, it is often difficult to construct methods for independent sampling from such distribu-

tions, as the normalisation constants are often intractable, which means that standard approaches

such as rejection sampling cannot be easily implemented.

As a result, Markov chain Monte Carlo (MCMC) methods are often used to obtain a se-

quence of dependent samples. However such an approach also faces challenges: the usual

MCMC problem of ensuring adequate mixing so as to obtain a representative sample, but also

the challenge of constructing a proposal mechanism that will provide samples from the man-

ifold. Recent developments, such as Hoff (2009), utilise sophisticated reparametrisations and

proposal distributions, often specifically adapted to each target distribution family.

In this talk, I will discuss our recent work in developing and applying Hamiltonian Monte

Carlo (HMC) techniques for sampling from arbitrary distributions on embedded manifolds

(Byrne and Girolami, 2013).

2 Hamiltonian Monte Carlo

The key challenge in any Metropolis–Hastings-based MCMC scheme is specifying a proposal

distribution that is capable of making long-distance moves that also maintain a high probability

of being accepted. Hamiltonian Monte Carlo (also known as Hybrid Monte Carlo, or HMC)

are a class of general purpose MCMC techniques, that make such proposals by introducing

an auxiliary “momentum” variable and simulating the dynamics of a hypothetical particle in a

potential field determined by the target density.

For a target density π(x) over R
n, a simple choice for the auxiliary variable is v ∼ Nn(0, I)

which is updated at the start of each iteration. The Hamiltonian is defined to be the negative log

joint density (up to proportionality):

H(x, v) = − log π(x) + 1

2
v⊤v.

The dynamics of x and v over time is determined by Hamilton’s equations

dx

dt
=

∂H

∂v
= v,

dv

dt
= −

∂H

∂x
= ∇x log π(x), (1)

Of course, these equations cannot typically be solved exactly, and so we instead approximate the

dynamics by alternately updating the momentum and velocity via what is known as a leapfrog

integrator:

x← x + ǫv, v ← v + ǫ∇x log π(x) (2)

By running the integrator for a large number of steps, we can obtain very large movements

through the sample space. The exact Hamiltonian dynamics will preserve the Hamiltonian,

giving a Metropolis acceptance probability of 1; the discretisation error means that this will

not be the case for the approximation (2), but by choosing ǫ appropriately, a reasonably high

acceptance ratio can still be maintained.
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3 Geodesic Monte Carlo

Unfortunately, the leapfrog scheme cannot be applied directly to distributions on a manifold

M, as a linear jump x + ǫv will typically not be inM.

The first step is to constrain v to be in the tangent space T
x

of x ∈M. If P
x

is an orthogonal

projection onto Tx, then we assume

v | x ∼ N(0, P⊤

x
Px)

A suitable integrator can be constructed via a procedure known as “Hamiltonian splitting”,

which alternates between two steps:

1. The first step involves updating the velocity according to Hamilton’s equations, but con-

strained to stay within the tangent space. This is equivalent to simply applying an orthog-

onal projection

v ← P
x
[v + ǫ∇

x
π(x)] (3)

2. The second step involves transporting both x and v along the geodesic flow of M for

length α = ‖v‖: this requires solving the geodesic equations, but for many manifolds

that arise in directional problems, explicit forms for this are known. For instance on

spheres, the geodesic flows are simply the “great circle” rotations

[

x v
]

←
[

x v
]

[

1 0
0 α−1

] [

cos(αǫ) − sin(αǫ)
sin(αǫ) cos(αǫ)

] [

1 0
0 α

]

These methods are very flexible and straightforward to implement, requiring only the ability to

evaluate the unnormalised log-density and its gradients. As with standard HMC, by adjusting

the number of steps and step size, we are able to make large proposals yet also maintain high

acceptance probabilities.

We demonstrate the utility of these methods on several problems in directional statistics,

such as sampling from Bingham–von Mises–Fisher distributions, and distributions Stiefel man-

ifolds.
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