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Geometric dualities

Affine commutative C-algebra

R = C[X1, . . . ,Xn]/I

Commutative unital C∗-algebra

A

Affine reduced k -algebra

R = k [X1, . . . ,Xn]/I

. . .

Complex algebraic variety

VR

Compact topological space

VA

The geometry of k -definable
points, curves etc of an algebraic
variety VR

. . .
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Why model theory?

These are syntax – semantics dualities.

In general the syntax may come with a topology! (as in
C∗-algebras).
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Zariski geometries as geometric semantics

The structure V = (V ,L) with a topology on its cartesian
powers is said to be (Noetherian) Zariski if it satisfies

Closed subsets of V n are exactly those which are
L-positive-quantifier-free definable.
The projection of a closed set is quantifier-free definable
(positive quantifier-elimination).
A good dimension notion on closed subsets is given.
. . .

Theorem. Noetherian Zariski geometries allow elimination of
quantifiers and are stable of finite Morley rank.
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Further geometric dualities

Affine commutative C-algebra R

Commutative C∗-algebra A

Affine reduced k -algebra R

∗-algebra A at roots of unity

Weyl-Heisenberg algebra
〈Q,P : QP − PQ = i~〉

Complex algebraic variety VR

Compact topological space VA

The k -definable structure on an
algebraic variety VR

Zariski geometry VA

?
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A noncommutative duality Theorem

For the category of algebras “at roots of unity” there is an
equivalence of categories

AV ←→ VA.

AV – co-ordinate algebra, VA – Zariski geometry.
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A non-commutative example “at root of unity”

Non-commutative 2-torus VA at ε = e2πi m
N

has co-ordinate ring A =〈
U,V : U∗ = U−1, V ∗ = V−1, UV = εVU

〉

Points α on the torus have structure of an
N-dim Hilbert space Vα with a
distinguished system of canonical
orthonormal bases

A
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QP − PQ = i~
and physics assumes that Q and P are self-adjoint.

This does not allow a C∗-algebra (Banach algebra) setting.
Also does not fit a model-theoretic construction.

On suggestion of Weyl and following Stone – von Neumann
Theorem replace the Weyl-Heisenberg algebra by the category
of Weyl ∗-algebras

Aa,b =
〈

Ua,V b : UaV b = e2πiabV bUa
〉
, a,b ∈ R.

Think:
Ua = eiaQ, V b = e

2π
~ ibP .

When a,b ∈ Q the algebra Aa,b is at root of unity. We call such
algebras rational Weyl algebras.

B. Zilber University of Oxford

The semantics of algebraic quantum mechanics and the role of model theory.



QP − PQ = i~
and physics assumes that Q and P are self-adjoint.

This does not allow a C∗-algebra (Banach algebra) setting.

Also does not fit a model-theoretic construction.

On suggestion of Weyl and following Stone – von Neumann
Theorem replace the Weyl-Heisenberg algebra by the category
of Weyl ∗-algebras

Aa,b =
〈

Ua,V b : UaV b = e2πiabV bUa
〉
, a,b ∈ R.

Think:
Ua = eiaQ, V b = e

2π
~ ibP .

When a,b ∈ Q the algebra Aa,b is at root of unity. We call such
algebras rational Weyl algebras.

B. Zilber University of Oxford

The semantics of algebraic quantum mechanics and the role of model theory.



QP − PQ = i~
and physics assumes that Q and P are self-adjoint.

This does not allow a C∗-algebra (Banach algebra) setting.
Also does not fit a model-theoretic construction.

On suggestion of Weyl and following Stone – von Neumann
Theorem replace the Weyl-Heisenberg algebra by the category
of Weyl ∗-algebras

Aa,b =
〈

Ua,V b : UaV b = e2πiabV bUa
〉
, a,b ∈ R.

Think:
Ua = eiaQ, V b = e

2π
~ ibP .

When a,b ∈ Q the algebra Aa,b is at root of unity. We call such
algebras rational Weyl algebras.

B. Zilber University of Oxford

The semantics of algebraic quantum mechanics and the role of model theory.



QP − PQ = i~
and physics assumes that Q and P are self-adjoint.

This does not allow a C∗-algebra (Banach algebra) setting.
Also does not fit a model-theoretic construction.

On suggestion of Weyl and following Stone – von Neumann
Theorem replace the Weyl-Heisenberg algebra by the category
of Weyl ∗-algebras

Aa,b =
〈

Ua,V b : UaV b = e2πiabV bUa
〉
, a,b ∈ R.

Think:
Ua = eiaQ, V b = e

2π
~ ibP .

When a,b ∈ Q the algebra Aa,b is at root of unity. We call such
algebras rational Weyl algebras.

B. Zilber University of Oxford

The semantics of algebraic quantum mechanics and the role of model theory.



QP − PQ = i~
and physics assumes that Q and P are self-adjoint.

This does not allow a C∗-algebra (Banach algebra) setting.
Also does not fit a model-theoretic construction.

On suggestion of Weyl and following Stone – von Neumann
Theorem replace the Weyl-Heisenberg algebra by the category
of Weyl ∗-algebras

Aa,b =
〈

Ua,V b : UaV b = e2πiabV bUa
〉
, a,b ∈ R.

Think:
Ua = eiaQ, V b = e

2π
~ ibP .

When a,b ∈ Q the algebra Aa,b is at root of unity. We call such
algebras rational Weyl algebras.

B. Zilber University of Oxford

The semantics of algebraic quantum mechanics and the role of model theory.



QP − PQ = i~. Correcting the syntax

When a,b ∈ Q the algebra Aa,b is at root of unity. We call such
algebras rational Weyl algebras.
Ignore the non-rational ones. Replace “the algebra given by
QP − PQ = i~” by the category Afin of rational Weyl algebras

Aa,b =
〈

Ua,V b : UaV b = e2πiabV bUa
〉
, a,b ∈ Q

with morphisms = embeddings.
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Categories Afin and Vfin

Note:

Aa,b ↪→ Ac,d iff ∃n,m ∈ Z cn = a & dm = b

Thus: Afin is a lattice ordered by (the above) divisibility
relation.

In the dual category Vfin morphisms of Zariski geometries

VAa,b → VAc,d

are certain relations that make each such pair a Zariski
geometry again.

Note: VAa,b is interpretable in VAc,d but not the other way round.
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The duality functor A 7→ VA can be interpreted as defining a
sheaf of Zariski geometries over the lattice Afin

V 1
µ
, 1
µ

µ ∈ ∗Z

VA1,1

V 1
n1

, 1
m1

V k1
n1

,
l1

m1

V 1
n2

, 1
m2

V 1
n1.n2

, 1
m1.m2

A 1
µ
, 1
µ

A1,1

A 1
n1

, 1
m1

A 1
n2

, 1
m2

A k1
n1

,
l1

m1
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n1.n2
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m1.m2
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How noncommutative VA 1
m ,

1
n

deforms into VA 1
µ ,

1
µ

A
	 	

	 	 	 	
A
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Not all elements of the non-standard algebra A 1
µ
, 1
µ

can be given
a limit meaning!

Not all elements of the non-standard VA 1
µ ,

1
µ

can be given a limit

meaning!

The subalgebra of operators which survive the limit

A∗ ⊂ A 1
µ
, 1
µ

acts on the substructure

V∗ ⊂ VA 1
µ ,

1
µ

which survive the limit.
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The space of states S.

The structure S is a homomorphic image of V∗ under a
homomorphism called lim,

lim : V∗ → S, ∗Q→ R.
This can also be classified as a generalisation of the

standard part map,
specialisation,
residue map.

Can be explained in terms of positive model theory.

S is a symplectic space with a vector field and Fourier
transforms on it.
See e.g. G. Lion and M.Vergne, The Weil Representation,
Maslov Index, and Theta Series Birkhauser 1980
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Operators acting on S
Remark. Operators U

1
µ and V

1
µ “do not survive” lim .

We define (interdefinably) in each member Va,b of the
ultraproduct:

Q :=
Ua − U−a

2ia
, P :=

V b − V−b

2ib
in accordance with

Ua = eiaQ, V b = eibP.

Then for any vector e of norm 1,

(QP− PQ)e = i~e + (s1 − s2)

where s1, s2 are vectors of norm 1 which depend on a,b and e.
Under the lim s1 − s2 vanishes!

So, in the space of states: QP− PQ = i~I.
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Observables

A relation, a function or an operator which is defined on the
multisorted structure Vfin is said to be observable if it is
respected by lim and the image in S is non-trivial.
In particular, an observable relation is Zariski closed.

Examples.
Operators P and Q.

|〈w1|w2〉|Dir := µ · |〈w1|w2〉|, renormalised probability.
...
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Gauss quadratic sums survive the limit

N−1∑
n=0

e2πi n2
N = e−i π4

√
N

if N is even, e.g. N = µ2.

This allows us to calculate (approximate) oscillating Gaussian
integrals, for a ∈ Q, ∫

R
eiax2

dx

and eventually for a ∈ R.
Here, for a = k

m it is crucial that µ is divisible by k .
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Example of calculation. Quantum harmonic oscillator.

The Hamiltonian:
H =

1
2
(P2 + Q2)

The time evolution operator :

K t = K t
H := e−i H

~ t , t ∈ R.

This “induces” the automorphism of the category of algebras

Ua 7→ e−
2πa2 sin t cos t

2 Ua sin tV a cos t

V a 7→ e
2πa2 sin t cos t

2 U−a cos tV a sin t

(in V∗ we only consider t such that sin t , cos t ∈ Q− {0}).
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Example. Quantum harmonic oscillator.

Write |x〉 for eigenvectors of Q with eigenvalues x ∈ R.
Then the kernel of the Feynman propagator is calculated in
lim V∗ as

〈x1|K tx2〉Dir =

√
1

2πi~ sin t
exp i

(x2
1 + x2

2 ) cos t − 2x1x2

2~ sin t
.

The trace of K t ,

Tr(K t) =

∫
R
〈x |K tx〉 = 1

sin t
2
.
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Tr(K t) =

∫
R
〈x |K tx〉 = 1

sin t
2
.

Note that in terms of conventional mathematical physics we
have calculated

Tr(K t) =
∞∑

n=0

e−it(n+ 1
2 ),

a non-convergent infinite sum.
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An analogy: p-adic and motivic integration

∫
A(P)
|f (z)|tdz = g(q, t)

where P is a locally compact non-archimedean field, q = pn is
the cardinality of the residue field of P, t ∈ R and g is a nice
function which does not depend on P.

In the formulae above x appears at any high enough level of
V 1

m ,
1
m

of the category as

q = pn2
= eix2

; p = e
2πi
m2
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〈x1|K tx2〉Dir =

∫
R

f (y)tdy

g(q, t) =

√
1

2πi~ sin t
exp i

(x2
1 + x2

2 ) cos t − 2x1x2

2~ sin t
.
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Conclusions

The resulting semantics of the canonical commutation
relation QP − PQ = i~ suggests that the universe of
quantum mechanics is a huge finite space of states.
The known list of observables can be explained by the
semantics.
The calculations of key integrals can be reduced to
calculations of finite sums without invoking continuous
limits.
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