The semantics of algebraic quantum mechanics and the role of model theory.

B. Zilber

University of Oxford

August 6, 2016

University of Oxford

B. Zilber

B.Zilber, *The semantics of the canonical commutation relations* arxiv.org/abs/1604.07745

University of Oxford

The semantics of algebraic quantum mechanics and the role of model theory.

B. Zilber

Geometric dualities

Affine commutative C-algebra

 $R = \mathbb{C}[X_1, \ldots, X_n]/I$

Commutative unital C*-algebra

Α

Affine reduced k-algebra

 $R = k[X_1,\ldots,X_n]/I$

Complex algebraic variety V_R Compact topological space V_A

The geometry of *k*-definable points, curves etc of an algebraic variety V_R

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

. . .

B. Zilber

University of Oxford

Why model theory?

These are syntax – semantics dualities.

B. Zilber

University of Oxford

B. Zilber

These are syntax – semantics dualities.

In general the syntax may come with a topology!

University of Oxford

B. Zilber

These are syntax – semantics dualities.

In general the syntax may come with a topology! (as in C^* -algebras).

University of Oxford

Zariski geometries as geometric semantics

The structure $\mathbf{V} = (V, L)$ with a topology on its cartesian powers is said to be (Noetherian) Zariski if it satisfies

- Closed subsets of Vⁿ are exactly those which are L-positive-quantifier-free definable.
- The projection of a closed set is quantifier-free definable (positive quantifier-elimination).
- A good dimension notion on closed subsets is given.

...

B Zilber

University of Oxford

Zariski geometries as geometric semantics

The structure $\mathbf{V} = (V, L)$ with a topology on its cartesian powers is said to be (Noetherian) Zariski if it satisfies

- Closed subsets of Vⁿ are exactly those which are L-positive-quantifier-free definable.
- The projection of a closed set is quantifier-free definable (positive quantifier-elimination).
- A good dimension notion on closed subsets is given.

...

Theorem. Noetherian Zariski geometries allow elimination of quantifiers and are stable of finite Morley rank.

Further geometric dualities

- Affine commutative \mathbb{C} -algebra R
- Commutative C*-algebra A
- Affine reduced k-algebra R
- *-algebra A at roots of unity
- Weyl-Heisenberg algebra $\langle Q, P : QP PQ = i\hbar \rangle$

Complex algebraic variety V_R Compact topological space V_A The *k*-definable structure on an algebraic variety V_R

Zariski geometry V_A

Further geometric dualities

- Affine commutative \mathbb{C} -algebra R
- Commutative C*-algebra A
- Affine reduced k-algebra R
- *-algebra A at roots of unity
- Weyl-Heisenberg algebra $\langle Q, P : QP PQ = i\hbar \rangle$

Complex algebraic variety V_R Compact topological space V_A The *k*-definable structure on an algebraic variety V_R

Zariski geometry V_A

?

University of Oxford

A noncommutative duality Theorem

For the category of algebras "at roots of unity" there is an equivalence of categories

$$A_{\mathbf{V}} \longleftrightarrow \mathbf{V}_{\mathcal{A}}.$$

 A_V – co-ordinate algebra, V_A – Zariski geometry.

B. Zilber

University of Oxford

A non-commutative example "at root of unity"

Non-commutative 2-torus V_A at $\epsilon = e^{2\pi i \frac{m}{N}}$ has co-ordinate ring $A = \langle U, V : U^* = U^{-1}, V^* = V^{-1}, UV = \epsilon VU \rangle$

University of Oxford

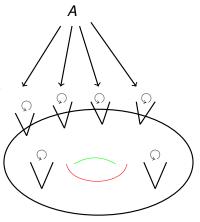
The semantics of algebraic quantum mechanics and the role of model theory.

B. Zilber

A non-commutative example "at root of unity"

Non-commutative 2-torus V_A at $\epsilon = e^{2\pi i \frac{m}{N}}$ has co-ordinate ring $A = \langle U, V : U^* = U^{-1}, V^* = V^{-1}, UV = \epsilon VU \rangle$

Points α on the torus have structure of an *N*-dim Hilbert space V_{α} with a distinguished system of **canonical orthonormal bases**



University of Oxford

children (

B. Zilber

and physics assumes that Q and P are self-adjoint.

University of Oxford

$QP - PQ = i\hbar$

B. Zilber

and physics assumes that Q and P are self-adjoint.

This does not allow a C^* -algebra (Banach algebra) setting.

University of Oxford

.

$QP - PQ = i\hbar$

B. Zilber

and physics assumes that Q and P are self-adjoint.

This does not allow a C^* -algebra (Banach algebra) setting. Also does not fit a model-theoretic construction.

University of Oxford

$QP - PQ = i\hbar$

and physics assumes that Q and P are self-adjoint.

This does not allow a C^* -algebra (Banach algebra) setting. Also does not fit a model-theoretic construction.

On suggestion of Weyl and following Stone – von Neumann Theorem replace the Weyl-Heisenberg algebra by the category of **Weyl** *-algebras

$$A_{a,b}=\left\langle U^{a},V^{b}:\ U^{a}V^{b}=e^{2\pi iab}V^{b}U^{a}
ight
angle ,\ a,b\in\mathbb{R}.$$

Think:

$$U^a = e^{iaQ}, V^b = e^{\frac{2\pi}{\hbar}ibP}.$$

University of Oxford

B. Zilber

$QP - PQ = i\hbar^{\dagger}$

and physics assumes that Q and P are self-adjoint.

This does not allow a C^* -algebra (Banach algebra) setting. Also does not fit a model-theoretic construction.

On suggestion of Weyl and following Stone – von Neumann Theorem replace the Weyl-Heisenberg algebra by the category of **Weyl *-algebras**

$$A_{a,b}=\left\langle U^{a},V^{b}:\ U^{a}V^{b}=e^{2\pi iab}V^{b}U^{a}
ight
angle ,\ a,b\in\mathbb{R}.$$

Think:

$$U^a = e^{iaQ}, V^b = e^{\frac{2\pi}{\hbar}ibP}.$$

When $a, b \in \mathbb{Q}$ the algebra $A_{a,b}$ is at root of unity. We call such algebras rational Weyl algebras.

University of Oxford

The semantics of algebraic quantum mechanics and the role of model theory.

B. Zilber

When $a, b \in \mathbb{Q}$ the algebra $A_{a,b}$ is at root of unity. We call such algebras rational Weyl algebras.

Ignore the non-rational ones. Replace "the algebra given by $QP - PQ = i\hbar$ " by the category A_{fin} of rational Weyl algebras

$$oldsymbol{A}_{a,b}=\left\langle oldsymbol{U}^{a},oldsymbol{V}^{b}:\ oldsymbol{U}^{a}oldsymbol{V}^{b}=oldsymbol{e}^{2\pi iab}oldsymbol{V}^{b}oldsymbol{U}^{a}
ight
angle ,\ oldsymbol{a},oldsymbol{b}\in\mathbb{Q}$$

with morphisms = embeddings.

B Zilber

Categories \mathcal{A}_{fin} and \mathcal{V}_{fin}

Note:

B. Zilber

$$A_{a,b} \hookrightarrow A_{c,d}$$
 iff $\exists n, m \in \mathbb{Z}$ $cn = a \& dm = b$

< □ > < □ > < □ > < □ > < □</p>

Categories $\mathcal{A}_{\mathrm{fin}}$ and $\mathcal{V}_{\mathrm{fin}}$

Note:

B. Zilber

$$A_{a,b} \hookrightarrow A_{c,d}$$
 iff $\exists n, m \in \mathbb{Z}$ $cn = a \& dm = b$

Thus: $\mathcal{A}_{\mathrm{fin}}$ is a lattice ordered by (the above) **divisibility** relation.

University of Oxford

Categories $\mathcal{A}_{\mathrm{fin}}$ and $\mathcal{V}_{\mathrm{fin}}$

Note:

$$A_{a,b} \hookrightarrow A_{c,d}$$
 iff $\exists n, m \in \mathbb{Z}$ $cn = a \& dm = b$

Thus: $\mathcal{A}_{\mathrm{fin}}$ is a lattice ordered by (the above) **divisibility** relation.

In the dual category \mathcal{V}_{fin} morphisms of Zariski geometries

$$\mathsf{V}_{\mathcal{A}_{a,b}} o \mathsf{V}_{\mathcal{A}_{c,d}}$$

イロト イヨト イヨト イヨト

University of Oxford

are certain relations that make each such pair a Zariski geometry again.

B. Zilber

Categories $\mathcal{A}_{\mathrm{fin}}$ and $\mathcal{V}_{\mathrm{fin}}$

Note:

$$A_{a,b} \hookrightarrow A_{c,d}$$
 iff $\exists n, m \in \mathbb{Z}$ $cn = a \& dm = b$

Thus: $\mathcal{A}_{\mathrm{fin}}$ is a lattice ordered by (the above) **divisibility** relation.

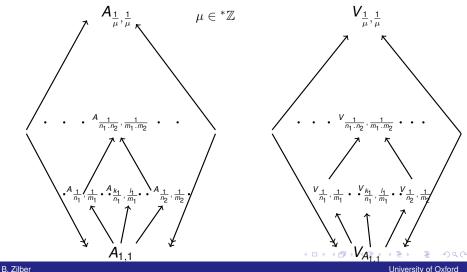
In the dual category \mathcal{V}_{fin} morphisms of Zariski geometries

$$\mathsf{V}_{\mathcal{A}_{a,b}} o \mathsf{V}_{\mathcal{A}_{c,d}}$$

are certain relations that make each such pair a Zariski geometry again.

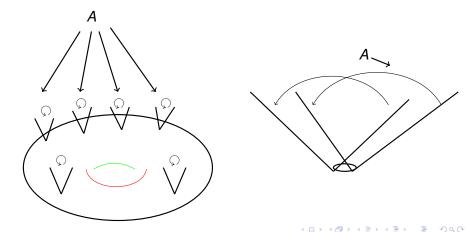
Note: $V_{A_{a,b}}$ is interpretable in $V_{A_{c,d}}$ but not the other way round.

The duality functor $A \mapsto V_A$ can be interpreted as defining a sheaf of Zariski geometries over the lattice A_{fin}



University of Oxford

How noncommutative $V_{A_{\frac{1}{m},\frac{1}{n}}}$ deforms into $V_{A_{\frac{1}{\mu},\frac{1}{\mu}}}$



University of Oxford

B. Zilber

Not all elements of the non-standard algebra $A_{\frac{1}{\mu},\frac{1}{\mu}}$ can be given a limit meaning!

University of Oxford

The semantics of algebraic quantum mechanics and the role of model theory.

B. Zilber

Not all elements of the non-standard algebra $A_{\frac{1}{\mu},\frac{1}{\mu}}$ can be given a limit meaning!

Not all elements of the non-standard $V_{A_{\frac{1}{\mu},\frac{1}{\mu}}}$ can be given a limit meaning!

The semantics of algebraic quantum mechanics and the role of model theory.

B. Zilber

Not all elements of the non-standard algebra $A_{\frac{1}{\mu},\frac{1}{\mu}}$ can be given a limit meaning!

Not all elements of the non-standard $V_{A_{\frac{1}{\mu},\frac{1}{\mu}}}$ can be given a limit meaning!

The subalgebra of operators which survive the limit

$$A_* \subset A_{rac{1}{\mu},rac{1}{\mu}}$$

acts on the substructure

$$\mathsf{V}_* \subset \mathsf{V}_{\mathcal{A}_{rac{1}{\mu},rac{1}{\mu}}}$$

which survive the limit.

B. Zilber

University of Oxford

The structure \mathbb{S} is a homomorphic image of V_* under a homomorphism called lim,

 $\mathsf{lim}: \mathbf{V}_* \to \mathbb{S}, \ ^*\mathbb{Q} \to \mathbb{R}.$

This can also be classified as a generalisation of the

- standard part map,
- specialisation,
- residue map.

B. Zilber

The structure \mathbb{S} is a homomorphic image of V_* under a homomorphism called lim,

 $\mathsf{lim}: \mathbf{V}_* \to \mathbb{S}, \ ^*\mathbb{Q} \to \mathbb{R}.$

This can also be classified as a generalisation of the

- standard part map,
- specialisation,
- residue map.

B. Zilber

Can be explained in terms of *positive model theory*.

The structure \mathbb{S} is a homomorphic image of V_* under a homomorphism called lim,

 $\mathsf{lim}: \mathbf{V}_* \to \mathbb{S}, \ ^*\mathbb{Q} \to \mathbb{R}.$

This can also be classified as a generalisation of the

- standard part map,
- specialisation,
- residue map.

B. Zilber

Can be explained in terms of *positive model theory*.

The structure $\mathbb S$ is a homomorphic image of $\bm V_*$ under a homomorphism called lim,

 $\mathsf{lim}: \mathbf{V}_* \to \mathbb{S}, \ ^*\mathbb{Q} \to \mathbb{R}.$

This can also be classified as a generalisation of the

- standard part map,
- specialisation,
- residue map.

Can be explained in terms of *positive model theory*.

 $\mathbb S$ is a symplectic space with a vector field and Fourier transforms on it.

See e.g. G. Lion and M.Vergne, **The Weil Representation**, **Maslov Index, and Theta Series** Birkhauser 1980, Amager 1980, A

Remark. Operators $U^{\frac{1}{\mu}}$ and $V^{\frac{1}{\mu}}$ "do not survive" lim.

The semantics of algebraic quantum mechanics and the role of model theory.

B. Zilber

Remark. Operators $U^{\frac{1}{\mu}}$ and $V^{\frac{1}{\mu}}$ "do not survive" lim. We define (interdefinably) in each member $V_{a,b}$ of the ultraproduct:

$$Q := rac{U^a - U^{-a}}{2ia}, \ \ P := rac{V^b - V^{-b}}{2ib}$$

in accordance with

B. Zilber

$$U^a = e^{iaQ}, V^b = e^{ibP}.$$

University of Oxford

Remark. Operators $U^{\frac{1}{\mu}}$ and $V^{\frac{1}{\mu}}$ "do not survive" lim. We define (interdefinably) in each member $V_{a,b}$ of the ultraproduct:

$$Q := rac{U^a - U^{-a}}{2ia}, \ \ P := rac{V^b - V^{-b}}{2ib}$$

in accordance with

B Zilber

$$U^a = e^{iaQ}, V^b = e^{ibP}.$$

Then for any vector e of norm 1,

$$(\mathbf{QP} - \mathbf{PQ})\boldsymbol{e} = i\hbar\boldsymbol{e} + (\boldsymbol{s}_1 - \boldsymbol{s}_2)$$

where s_1, s_2 are vectors of norm 1 which depend on a, b and e.

University of Oxford

Remark. Operators $U^{\frac{1}{\mu}}$ and $V^{\frac{1}{\mu}}$ "do not survive" lim. We define (interdefinably) in each member $V_{a,b}$ of the ultraproduct:

$$Q := rac{U^a - U^{-a}}{2ia}, \ \ P := rac{V^b - V^{-b}}{2ib}$$

in accordance with

$$U^a = e^{iaQ}, V^b = e^{ibP}.$$

Then for any vector e of norm 1,

$$(\mathbf{QP} - \mathbf{PQ})\boldsymbol{e} = i\hbar\boldsymbol{e} + (\boldsymbol{s}_1 - \boldsymbol{s}_2)$$

where s_1 , s_2 are vectors of norm 1 which depend on a, b and e. Under the lim $s_1 - s_2$ vanishes!

B. Zilber

The semantics of algebraic quantum mechanics and the role of model theory.

B Zilber

A relation, a function or an operator which is defined on the multisorted structure \mathcal{V}_{fin} is said to be **observable** if it is respected by lim and the image in \mathbb{S} is non-trivial. In particular, **an observable relation is Zariski closed**.

A relation, a function or an operator which is defined on the multisorted structure \mathcal{V}_{fin} is said to be **observable** if it is respected by lim and the image in \mathbb{S} is non-trivial. In particular, **an observable relation is Zariski closed**.

Examples.

- Operators P and Q.
- $|\langle \mathbf{w}_1 | \mathbf{w}_2 \rangle|_{\text{Dir}} := \mu \cdot |\langle \mathbf{w}_1 | \mathbf{w}_2 \rangle|, \text{ renormalised probability.}$

...

B Zilber

University of Oxford

< ロ > < 同 > < 回 > < 回 >

Gauss quadratic sums survive the limit

$$\sum_{n=0}^{N-1} e^{2\pi i \frac{n^2}{N}} = e^{-i\frac{\pi}{4}} \sqrt{N}$$

if *N* is even, e.g. $N = \mu^2$.

B. Zilber

University of Oxford

Gauss quadratic sums survive the limit

$$\sum_{n=0}^{N-1} e^{2\pi i \frac{n^2}{N}} = e^{-i \frac{\pi}{4}} \sqrt{N}$$

if N is even, e.g. $N = \mu^2$.

This allows us to calculate (approximate) oscillating Gaussian integrals, for $a \in \mathbb{Q}$,

$$\int_{\mathbb{R}} e^{iax^2} dx$$

and eventually for $a \in \mathbb{R}$.

B. Zilber

University of Oxford

Gauss quadratic sums survive the limit

$$\sum_{n=0}^{N-1} e^{2\pi i \frac{n^2}{N}} = e^{-i \frac{\pi}{4}} \sqrt{N}$$

if N is even, e.g. $N = \mu^2$.

B. Zilber

This allows us to calculate (approximate) oscillating Gaussian integrals, for $a \in \mathbb{Q}$,

$$\int_{\mathbb{R}} e^{iax^2} dx$$

and eventually for $a \in \mathbb{R}$. Here, for $a = \frac{k}{m}$ it is crucial that μ is divisible by k.

University of Oxford

The semantics of algebraic quantum mechanics and the role of model theory.

Example of calculation. Quantum harmonic oscillator.

The Hamiltonian:

B. Zilber

$$H=\frac{1}{2}(\mathrm{P}^2+\mathrm{Q}^2)$$

University of Oxford

Example of calculation. Quantum harmonic oscillator.

The Hamiltonian:

$$H=\frac{1}{2}(P^2+Q^2)$$

The time evolution operator :

$$K^t = K^t_H := e^{-i\frac{H}{\hbar}t}, \ t \in \mathbb{R}.$$

This "induces" the automorphism of the category of algebras

$$U^{a} \mapsto e^{-\frac{2\pi a^{2} \sin t \cos t}{2}} U^{a \sin t} V^{a \cos t}$$
$$V^{a} \mapsto e^{\frac{2\pi a^{2} \sin t \cos t}{2}} U^{-a \cos t} V^{a \sin t}$$

(in V_* we only consider *t* such that sin *t*, cos $t \in \mathbb{Q} - \{0\}$).

University of Oxford

Example. Quantum harmonic oscillator.

Write $|x\rangle$ for eigenvectors of Q with eigenvalues $x \in \mathbb{R}$. Then the *kernel of the Feynman propagator* is calculated in $\lim V_*$ as

$$\langle x_1 | \mathcal{K}^t x_2 \rangle_{\text{Dir}} = \sqrt{\frac{1}{2\pi i\hbar \sin t}} \exp i \frac{(x_1^2 + x_2^2)\cos t - 2x_1 x_2}{2\hbar \sin t}$$

University of Oxford

The semantics of algebraic quantum mechanics and the role of model theory.

Example. Quantum harmonic oscillator.

Write $|x\rangle$ for eigenvectors of Q with eigenvalues $x \in \mathbb{R}$. Then the *kernel of the Feynman propagator* is calculated in $\lim V_*$ as

$$\langle x_1 | \mathcal{K}^t x_2 \rangle_{\text{Dir}} = \sqrt{\frac{1}{2\pi i\hbar \sin t}} \exp i \frac{(x_1^2 + x_2^2)\cos t - 2x_1 x_2}{2\hbar \sin t}$$

The trace of K^t ,

$$\operatorname{Tr}(\mathcal{K}^t) = \int_{\mathbb{R}} \langle x | \mathcal{K}^t x \rangle = \frac{1}{\sin \frac{t}{2}}.$$

University of Oxford

B. Zilber

$$\operatorname{Tr}(K^t) = \int_{\mathbb{R}} \langle x | K^t x \rangle = \frac{1}{\sin \frac{t}{2}}$$

æ University of Oxford

(日)

990

The semantics of algebraic quantum mechanics and the role of model theory.

$$\operatorname{Tr}(\mathcal{K}^t) = \int_{\mathbb{R}} \langle x | \mathcal{K}^t x \rangle = \frac{1}{\sin \frac{t}{2}}$$

Note that in terms of conventional mathematical physics we have calculated

$$\mathrm{Tr}(\mathbf{K}^{t}) = \sum_{n=0}^{\infty} e^{-it(n+\frac{1}{2})},$$

a non-convergent infinite sum.

University of Oxford

The semantics of algebraic quantum mechanics and the role of model theory.

An analogy: p-adic and motivic integration

$$\int_{\mathcal{A}(\mathfrak{P})} |f(z)|^t dz = g(q,t)$$

where \mathfrak{P} is a locally compact non-archimedean field, $q = p^n$ is the cardinality of the residue field of \mathfrak{P} , $t \in \mathbb{R}$ and g is a nice function which **does not depend on** \mathfrak{P} .

University of Oxford

The semantics of algebraic quantum mechanics and the role of model theory.

An analogy: p-adic and motivic integration

$$\int_{\mathcal{A}(\mathfrak{P})} |f(z)|^t dz = g(q,t)$$

where \mathfrak{P} is a locally compact non-archimedean field, $q = p^n$ is the cardinality of the residue field of \mathfrak{P} , $t \in \mathbb{R}$ and g is a nice function which **does not depend on** \mathfrak{P} .

In the formulae above *x* appears at any high enough level of $\mathbf{V}_{\frac{1}{m},\frac{1}{m}}$ of the category as

$$q = p^{n^2} = e^{ix^2}; \ p = e^{rac{2\pi i}{m^2}}$$

University of Oxford

B. Zilber

$$\langle x_1 | \mathcal{K}^t x_2 \rangle_{\text{Dir}} = \int_{\mathbb{R}} f(y)^t dy$$
$$g(q, t) = \sqrt{\frac{1}{2\pi i\hbar \sin t}} \exp i \frac{(x_1^2 + x_2^2)\cos t - 2x_1 x_2}{2\hbar \sin t}.$$

< ≣ ► ≣ প্থ University of Oxford

(日)

The semantics of algebraic quantum mechanics and the role of model theory.

Conclusions

- The resulting semantics of the canonical commutation relation QP - PQ = iħ suggests that the universe of quantum mechanics is a huge finite space of states.
- The known list of observables can be explained by the semantics.
- The calculations of key integrals can be reduced to calculations of finite sums without invoking continuous limits.