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What is a basis problem?

Problem
Suppose K0 is a downwards closed subclass of a given
quasi-ordered class (K,≤). Can one characterize K0 by forbidding
finitely many members of K?

Example

I Can one characterize in this way the class of all finite linear
orderings in the class of all linear orderings?

I Can one characterize in this way the class of countable linear
orderings in the class of all linear orderings?

I Can one characterize in this way the class of metrizable
compact spaces in the class of all compact spaces?

Definition
Given a quasi-ordered class (K,≤) of (relational) structures of the
same type, we say that K0 ⊆ K is a basis of K if for every K ∈ K
there is K0 ∈ K0 such that K0 ≤ K .
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Linear orderings

Proposition

The class of infinite linear orderings has basis {ω∗, ω}.

Corollary

The class of finite linear orderings is equal to {ω∗, ω}⊥.

Theorem (Laver, 1971)

Every class of σ-scattered linear orderings has a finite basis.

Theorem (Martinez-Ranero, 2011)

PFA implies that every class of Aronszajn orderings has a finite
basis.

Definition
Aronszajn ordering
is an uncountable linearly ordered set orthogonal to {ω∗1, ω1,R}.
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Theorem (Moore, 2005)

PFA implies that the class of Aronszajn orderings has basis
{C ∗,C}, where C is any uncountable linear ordering whose
cartesian square is the union of countably many chains.

Theorem (Baumgartner, 1973)

PFA implies that the class of uncountable separable orderings
has a one-element basis.

Corollary

PFA implies that the class of uncountable linear orderings has
basis

{ω∗1, ω1,B,C
∗,C}

where B is any set of reals of cardinality ℵ1 and where C is any
uncountable linear ordering whose cartesian square is the union of
countably many chains.

Corollary

PFA implies that the class of countable linear orderings is equal
to {ω∗1, ω1,B,C

∗,C}⊥.



Theorem (Moore, 2005)

PFA implies that the class of Aronszajn orderings has basis
{C ∗,C}, where C is any uncountable linear ordering whose
cartesian square is the union of countably many chains.

Theorem (Baumgartner, 1973)

PFA implies that the class of uncountable separable orderings
has a one-element basis.

Corollary

PFA implies that the class of uncountable linear orderings has
basis

{ω∗1, ω1,B,C
∗,C}

where B is any set of reals of cardinality ℵ1 and where C is any
uncountable linear ordering whose cartesian square is the union of
countably many chains.

Corollary

PFA implies that the class of countable linear orderings is equal
to {ω∗1, ω1,B,C

∗,C}⊥.



Theorem (Moore, 2005)

PFA implies that the class of Aronszajn orderings has basis
{C ∗,C}, where C is any uncountable linear ordering whose
cartesian square is the union of countably many chains.

Theorem (Baumgartner, 1973)

PFA implies that the class of uncountable separable orderings
has a one-element basis.

Corollary

PFA implies that the class of uncountable linear orderings has
basis

{ω∗1, ω1,B,C
∗,C}

where B is any set of reals of cardinality ℵ1 and where C is any
uncountable linear ordering whose cartesian square is the union of
countably many chains.

Corollary

PFA implies that the class of countable linear orderings is equal
to {ω∗1, ω1,B,C

∗,C}⊥.



Theorem (Moore, 2005)

PFA implies that the class of Aronszajn orderings has basis
{C ∗,C}, where C is any uncountable linear ordering whose
cartesian square is the union of countably many chains.

Theorem (Baumgartner, 1973)

PFA implies that the class of uncountable separable orderings
has a one-element basis.

Corollary

PFA implies that the class of uncountable linear orderings has
basis

{ω∗1, ω1,B,C
∗,C}

where B is any set of reals of cardinality ℵ1 and where C is any
uncountable linear ordering whose cartesian square is the union of
countably many chains.

Corollary

PFA implies that the class of countable linear orderings is equal
to {ω∗1, ω1,B,C

∗,C}⊥.



Trees

Definition
For two trees S and T , by S ≤1 T we denote the fact that S can
be topologically embeded into T , i.e., that there is f : S → T
which is strictly increasing and ∧-preserving.

Theorem (Laver, 1978)

Every class of σ-scattered trees quasi-ordered by the relation ≤1

of topological embedding has a finite basis.

Theorem (T. 2000)

I This fails for the class A of Aronszajn trees even if the the
relation ≤1 is weakened to the relation S ≤ T iff there is a
strictly increasing map from S to T .

I Assuming PFA the class (A,≤) is generated by a discrete
chain L of Lipschitz trees such that (L/Z,≤) is the
ℵ2-saturated linear ordering of cardinality ℵ2 = 2ℵ1 .
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Tukey reductions

Definition
A partially ordered set P is Tukey reducible to a partially ordered
set Q, in notation P ≤T Q, if there is a map f : P → Q that maps
unbounded subsets of P to unbounded subsets of Q, or
equivalently, a map g : Q → P which maps cofinal subsets of Q to
cofinal subsets of P.
When P ≤T Q and Q ≤T P we write P ≡T Q and say that P and
Q are Tukey equivalent or cofinaly similar.

Remark
In the class of (upwards) directed posets P ≡T Q is equivalent to
saying that P and Q are isomorphic to cofinal subsets of a single
directed poset R.
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Examples: Ultrafilters

Proposition

The directed set [θ]<ω of finite subsets of some infinite cardinal θ
realizes the maximal Tukey type among directed posets of
cardinality at most θ.

Theorem (Isbell 1964)

There is an ulltrafilter Umax on ω that realizes the maximal Tukey
type for directed sets of cardinality continuum.

Question (Isbell, 1964)

Is there any other Tukey type of nonprincipal ultrafilters on ω?

Remark
If U is a P-point ultraflter on ω then U 6≡T Umax.
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Five cofinal types

Theorem (T., 1985, 1996)

PFA implies that

1, ω, ω1, ω × ω1 and [ω1]<ω

are all Tukey types of directed sets of cardinality at most ℵ1.

Moreover, letting D0 = 1, D1 = ω, D2 = ω1, D3 = ω × ω1, and
D4 = [ω1]<ω, every partially ordered set of cardinality at most ℵ1

is Tukey equivalent to one of these:

I
⊕

i<5 niDi (i < 5, ni < ω),

I ℵ0 · 1⊕
⊕4

i=2 niDi (2 ≤ i < 5, ni < ω),

I ℵ0 · ω1 ⊕ n4[ω1]<ω (n4 < ω),

I ℵ0 · [ω1]<ω,

I ℵ1 · 1.
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Descriptive set theoretic context

Definition
Let D be a separable metric space and let ≤ be a partial order on
D. We say that (D,≤) is basic if

I for every x , y ∈ D the least upper bound x ∨ y exists and the
map ∨ : D × D → D is continuous;

I every bounded sequence has converging subsequence;

I every converging sequence has bounded subsequence.

Remark
The topology of a basic order is uniquely determined by the order
itself. It is the topology of sequential convergence where a
sequence is set to be convergent if all of its subsequences have
further subsequences that are bounded.
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Important examples

Example

I P-point ultrafilters are basic orders.

I σ-deals of compact subsets of a separable metric space with
the Vietoris topology.

I Analytic P-ideas on ω are basic.

Theorem (Solecki-T., 2004)

Analytic basic orders are in fact Polish.

Proposition (Solecki-T., 2004)

Let D be a nonempty basic order.

I D is compact iff D ≡T 1.

I If D is analytic and not locally compact then NN ≤T D.
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Automatic definability of ≤T

Theorem (Solecki-T., 2004)

Let D and E be basic orders. If D ≤T E then there is a Borel
map g : E → D which witnesses this.

Corollary

Let D and E be basic orders such that D ≤T E . If E is analytic
then so is D.

Corollary

Let U and V be ultrafilters on ω such that V is a P-point . If
U ≤ V then there is a continuous map g : V → U witnessing this.

Corollary

P-point ultrafilters have no more than continuum many
Tukey-predecessors.
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Basis problem for n-gaps

Notation:
Fix a countable index set N. For a, b ⊆ N, set

a ⊆∗ b iff a \ b is finite,

a ⊥ b iff a ∩ b is finite.

For X,Y ⊆ P(N), set

X ⊥ Y iff (∀a ∈ X) (∀b ∈ Y) a ⊥ b.

X⊥ = {b : (∀a ∈ X) b ∩ a is finite}.
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Preideals

Definition
A preideal on a countable set N is a family I of subsets of N such
that if x ∈ I and y ⊆ x is infinite, then y ∈ I .

Definition
Let Γ = {Γi : i ∈ n} be a n-sequence of preideals on the set N and
let X be a family of subsets of n.

1. We say that Γ is separated if there exist subsets
a0, . . . , an−1 ⊂ N such that

⋂
i∈n ai = ∅ and x ⊂∗ ai for all

x ∈ Γi , i ∈ n.

2. We say that Γ is an X-gap if it is not separated, but⋂
i∈A xi =∗ ∅ whenever xi ∈ Γi , A ∈ X.

Definition
When X = [n]2 is the family of all subsets of n of cardinality 2, an
X-gap will be called an n-gap,
When X = {n} consists only of the total set n = {0, . . . , n − 1},
then an X-gap will be called an n∗-gap.
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Ordering gaps

Definition
The orthogonal of the gap Γ is Γ⊥ =

(⋃
i∈n Γi

)⊥
. The gap Γ is

called dense if Γ⊥ is just the family of finite subsets of N.

Definition
For Γ and ∆ two n∗-gaps on countable sets N and M, respectively,
we say that

Γ ≤ ∆

if there exists a one-to-one map φ : N → M such that for i < n,

1. if x ∈ Γi then φ(x) ∈ ∆i .

2. If x ∈ Γ⊥i then φ(x) ∈ ∆⊥i .

Two n∗-gaps Γ and Γ′ are called equivalent if Γ ≤ Γ′ and if Γ′ ≤ Γ.
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Remark

I When Γ is a n-gap, the second condition can be substituted
by saying that if x ∈ Γ⊥ then φ(x) ∈ ∆⊥.

I Notice also that if ∆ is a n-gap, Γ is a n∗-gap, and Γ ≤ ∆,
then Γ is an n-gap.

I Another observation is that the above definition implies that
φ(x) ∈ ∆⊥⊥i if and only if x ∈ Γ⊥⊥i , and
φ(x) ∈ ∆⊥ if and only if x ∈ Γ⊥.

I Therefore the gaps {Γ⊥⊥i : i < n} and {∆⊥⊥i |φ“N : i < n} are
completely identified under the bijection φ : N → φ“N.

I There are other variants of the order ≤ between gaps but all
lead essentially to the same theory.

Definition
An analytic n∗-gap Γ is said to be a minimal analytic n∗-gap if
for every other analytic n∗-gap ∆, if ∆ ≤ Γ, then Γ ≤ ∆.
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Finite Basis Theorem for n-gaps

Theorem (Aviles-T., 2014)

Fix a natural number n. For every analytic n∗-gap Γ there exists a
minimal analytic n∗-gap ∆ such that ∆ ≤ Γ. Moreover, up to
equivalence, there exist only finitely many minimal analytic
n∗-gaps.

Remark
Up to permutations there is exactly 5 minimal analytic 2-gaps.
Most of them already show up in the literature.

Corollary

Let U be a countable family of pairwise disjoint analytic open
subsets of βN \ N, and let {U0,U1,U2} ⊆ U be such that
U0 ∩ U1 ∩ U2 6= ∅. Then, there exists a point x ∈ U0 ∩ U1 ∩ U2

such that
|{U ∈ U : x ∈ U}| ≤ 61.

Moreover, 61 is optimal in this result.
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Compact sets of Baire-class-1 functions

Theorem (T., 1999)

The class of non-metrizable separable compact sets of
Baire-class-1 functions defined on a Polish space has the 3-element
basis

{S ,D,P},

where S is the split-interval, D the (separable version of the)
Alexandrov duplicate of the Cantor set, and P the one-point
compactification of the Cantor tree space.

Remark
If x is a non-Gδ point of some compact set K of Baire-class-1
functions then K contains a topological copy of P where x plays
the role of point at infinity.
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Ramsey basis problems

Theorem (Ramsey 1930)

For every natural number k and every relation R ⊆ Nk there is an
infinite set M ⊆ N such that R � M is (N, <)-canonical.

Definition
A relation R ⊆ Nk is (N, <)-canonical on a set M ⊆ N if it is
∼(N,<)-invariant on Mk , i.e., if for (xi : i < k), (yi : i < k) ∈ Mk ,
(x0, ..., xk−1) ∼(N,<) (y0, ..., yk−1) implies
R(x0, ..., xk−1)⇔ R(y0, ..., yk−1)
where we put

(xi : i < k) ∼(N,<) (yi : i < k)

if of all i , j < k :
xi < xj ⇔ yi < yj ,
xi = xj ⇔ yi = yj ,
xi > xj ⇔ yi > yj .
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Recognizing canonical relations

Proposition

There is exactly eight canonical binary relations on N :

>,⊥,=, 6=, <,>,6,> .

> and = are the only canonical equivalence relations on N.
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Canonical equivalence relations

Theorem (Erdös-Rado 1950)

There is exactly 2k canonical equivalence relations on N[k] :
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Tukey meets Ramsey

Definition
A collection F of finite subsets of N is a barrier if every infinite
subset of N has an initial segment in F and if no two distinct
elements of F are comparable under inclusion.

Theorem (Pudlak-Rödl, 1982)

For every equivalence relation E on some barrier B on N there is
an infinite set M ⊆ N and an internal irreducible mapping f on
B|M such that E � (B|M) = Ef .

Theorem (T., 2012)

Let V be a selective ultrafilter on N and let U be a non-principal
ultrafilter on N such that U ≤T V. Then U is Rudin-Keisler
isomorphic to a countable Fubini power of V.

Corollary

Selective ultrafilters are Tukey minimal members of βN \ N.
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Ramsey basis results for Q

Theorem (Laver 1970)

For every natural number k and every set R ⊆ Qk there is M ⊆ Q
order-isomorphic to Q such that
R is a (Q, <,<′)-canonical relation on M,
where < is the usual ordering on Q and where <′ is a well-order of
Q of order-type ω.

Theorem (Devlin 1979)

Among canonical equivalence relations E on Q[k] with finitely
many classes there is the finest canonical equivalence relation
that has exactly tk = T2k+1 classes,
where Tn are tangent numbers given by
tan z =

∑∞
n=0

Tn
n! z

n.

Thus, t1 = 1, t2 = 2, t3 = 16, t4 = 272, .... .
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Remark

I There are also results about arbitrary canonical equivalence
relations on Q[k] (Vuksanovic 2012) but perhaps here we
could have a result that would match Devlin’s in its clarity.

I Similar methods give similar results for other
ultrahomogeneous countable structures such as, for example,
the random graph.

Question
Let A be a countable ultrahomogeneous structure.

I Under which condition on A we can find an expansion A∗ with
finitely many relations such that every subset R of some finite
power Ak is A∗-canonical when restricted to some
substructure of A isomorphic to A?

I Under which additional assumptions (if any) can we conclude
that on any finite symmetric power A[k] there is the finest
canonical equivalence relation with finitely many classes?
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Ramsey basis results for top(Q)

Theorem (T., 1994)

There is an equivalence relation Eosc on Q[2] with infinitely many
classes e1, e2, ..., ek , ... such that if for some positive integer k the
closure X of some subset X of Q has its kth Cantor-Bendixson
derivative nonempty then

X [2] ∩ ei 6= ∅ for all 2 ≤ i ≤ 2k .

Moreover, if X is not a discrete subspace of Q then X [2] ∩ e1 6= ∅.

Corollary (Baumgartner, 1986)

The class of equivalence relations on Q[2] (even those with finitely
many equivalence classes) does not have finite Ramsey basis.

Theorem (T., 1994)

The class of equivalence relations on Q[2] with open equivalence
classes has 26-element Ramsey basis.
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Basis problems for R

Theorem (Sierpinski, 1933)

Let < be the usual lexicographic ordering of 2N, let <′ be a
well-ordering of 2N and let S denote the expanded structure
(2N,∆, <,<′). Then for every positive integer k the finest
S-canonical equivalence relation ∼k

S on (2N)[k] that has k!(k − 1)!
many classes has the property that every uncountable X ⊆ 2N

realizes all the classes.

Conjecture (Galvin, 1970)

For every positive integer k every equivalence relation on R[k] with
finitely many classes is S-canonical when restricted to some
uncountable set X ⊆ R.

Conjecture (Galvin, 1970)

Every equivalence relation on R[2] with finitely many classes is
S-canonical when restricted to some topological copy of Q.
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Basis problems for ω1, ω2, ...

Theorem (T., 1987, 1994)

For every positive integer k there is an equivalence relation E on
[ωk ]k+1 with uncountably many classes such that every
uncountable subset X of ωk realizes all the classes of E .

Corollary

Galvin’s Conjecture implies 2ℵ0 > ℵω.

Question
Does Galvin’s Conjecture require the continuum to be above the
first weakly inaccessible cardinal?
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Borel restriction

The Cantor space 2N as the Borel structure:

(2N, <,∆)

where < is the lexicographical ordering and ∆ the distance
function:

∆(x , y) = min{n : x(n) 6= y(n)}.

Theorem (Galvin, 1968)

For every positive integer k every Borel set R ⊆ (2N)k is
(2N, <,∆)-canonical on some perfect set P ⊆ 2N.

Theorem (Galvin 1968, Blass 1981)

Among (2N, <,∆)-canonical Borel equivalence relation on a given
finite symmetric power [2N]k with finitely many classes there is
the finest one which has exactly (k − 1)! many classes.
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Theorem (Taylor 1979, Lefmann 1983, Vlitas 2014)

I There is exactly two (2N, <,∆)-canonical Borel equivalence
relations on [2N]2 with countably many classes: > and E∆.

I There is exactly seven (2N, <,∆)-canonical Borel equivalence
relations on [2N]2 given by the following seven conditions on
given two pairs {x0, x1} and {y0, y1} such that x0 < x1 and
y0 < y1:

1. x0 = x0,
2. x0 = y0,
3. x1 = y1,
4. x0 = y0 and x1 = y1,
5. ∆(x0, x1) = ∆(y0, y1) and x0 = x0,
6. ∆(x0, x1) = ∆(y0, y1) and x0 = y0,
7. ∆(x0, x1) = ∆(y0, y1) and x1 = y1.

I There is exactly twenty five (2N, <,∆)-canonical Borel
equivalence relations on [2N]3
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The arrow-notation

For two structures A and B of the same type, set(
B
A

)
= {A′ : A′ is a substructure of B isomorphic to A}.

For A,B and C of the same type and cardinals λ and τ , let

C → (B)Aλ,τ

denote the statement that for every coloring χ :

(
C
A

)
→ λ

there is B ′ ∈
(

C
B

)
such that χ on

(
B ′

A

)
has ≤ τ values. Let

C → (B)Aλ iff C → (B)Aλ,1,

C → [B]Aλ iff C → (B)Aλ,λ−1.
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Examples

Theorem (Galvin 1970)

9 6→ [4]24 but 10→ [4]24.

Theorem (Devlin, 1979)

Fix a positive integer k and let tk = tan(2k−1)(0) and consider the
rationals Q as ordered set.

I Q→ (Q)kl ,tk for all l < ω.

I Q 6→ [Q]ktk .

Conjecture (Galvin 1970)

For every positive integer k ,

I 2ℵ0 → (ℵ1)kl ,k!(k−1)! for all l < ω,

I 2ℵ0 6→ [ℵ1]kk!(k−1)!.
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More examples

Theorem (Galvin-Shelah 1973)

2ℵ0 6→ [2ℵ0 ]2ℵ0
.

Theorem (T., 1987, 1994)

ℵk 6→ [ℵ1]k+1
ℵ0

for all positive integers k .

Theorem (Devlin 1979, Folklore)

Fix a positive integer k and let tk = tan(2k−1)(0). Let R denote
the random graph and let Kk denote the complete graph on k
vertices.

I R → (R)Kk
l ,tk

for all l < ω.

I R 6→ [R]Kk
tk .
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Ramsey degrees in Fräıssé classes

Definition
Let K be a given class of finite L-structures.
For A ∈ K, let t(A,K) be the minimal number t (if it exists)
such that for every B in K and l < ω there exists C in K such that

C → (B)Al ,t .

Otherwise, put t(A,K) =∞.
We call t(A,K) the Ramsey degree of A in the class K. We say
that K has the Ramsey property if t(A,K) = 1 for all A ∈ K.

Example

I Finite linearly ordered sets have Ramsey degree 1 in the class
of all finite linear orderings, i.e., Q→ (n)kl for all k , l , n < ω.

I Complete graphs have Ramsey degree 1 in the class of all
finite graphs, i.e., R → (G)Kk

l for all finite graphs G and
k, l < ω.
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Ramsey degrees via expansions

Fix a countable ultrahomogeneous (relational) L-structure F .
Let F ∗ be an ultrahomogeneous L∗-expansion of F , where L∗ adds
to L finitely many, say n, relational symbols {Ri : i < n}.
For A ∈ Age(F ), set

XA
F∗ = {(R∗i : i < n) ∈

∏
i<n

2Aki
: (A,R∗0 , ...,R

∗
n−1) ∈ Age(F ∗)}.

tF∗(A) =
|XA

F∗ |
|Aut(A)|

.

Proposition

If Age(F ∗) has the Ramsey property , then

t(A,Age(F )) ≤ tF∗(A) for all A ∈ Age(F ),

and so, in particular t(A,Age(F )) <∞ for all A ∈ Age(F ).
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Definition
For F and F ∗ as above, we say that F ∗ has the expansion
property relative to F whenever

∀A∗ ∈ Age(F ∗) ∃B ∈ Age(F ) ∀B∗ ∈ Age(F ∗)

[B∗ � L = B =⇒ A∗ ≤ B∗].

Proposition

If the expansion F ∗ has both the Ramsey property and the
expansion property relative to F , then

t(A,Age(F )) = tF∗(A) for all A ∈ Age(F ).
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Application to topological dynamics

Theorem (Kechris-Pestov-T., 2005, Nguyen Van Thé 2013)

Let F be a countable relational ultrahomogeneous structure and
let F ∗ be its precompact relational expansion. The following are
equivalent:

I The action of Aut(F ) on the space XF∗ of all F ∗-admissible
L∗ \ L-relations on F is the universal minimal flow of the
group Aut(F ).

I F ∗ has the Ramsey property as well as the expansion
property relative to F .

Theorem (Zucker 2014)

Let F be a countable locally finite ultrahomogeneous structure. If
the group Aut(F ) has metrizable universal minimal flow then
t(A,Age(F )) <∞ for all A ∈ Age(F ).
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