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What is a basis problem?

Problem

Suppose Ky is a downwards closed subclass of a given
quasi-ordered class (K, <). Can one characterize Ko by forbidding
finitely many members of K?

Example

» (Can one characterize in this way the class of all finite linear
orderings in the class of all linear orderings?

» Can one characterize in this way the class of countable /inear
orderings in the class of all linear orderings?

» Can one characterize in this way the class of metrizable
compact spaces in the class of all compact spaces?

Definition

Given a quasi-ordered class (K, <) of (relational) structures of the
same type, we say that Ko C K is a basis of K if for every K € K
there is Ky € Ko such that Ky < K.
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Proposition
The class of infinite linear orderings has basis {w*,w}.

Corollary
The class of finite linear orderings is equal to {w* ,w}= .

Theorem (Laver, 1971)

Every class of o-scattered linear orderings has a finite basis.

Theorem (Martinez-Ranero, 2011)

PFA implies that every class of Aronszajn orderings has a finite
basis.

Definition

Aronszajn ordering
is an uncountable linearly ordered set orthogonal to {w}, w1, R}.
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Theorem (Moore, 2005)

PFA implies that the class of Aronszajn orderings has basis
{C*, C}, where C is any uncountable linear ordering whose
cartesian square is the union of countably many chains.

Theorem (Baumgartner, 1973)
PFA implies that the class of uncountable separable orderings
has a one-element basis.

Corollary

PFA implies that the class of uncountable linear orderings has
basis
{wfvwlu B7 C*v C}

where B is any set of reals of cardinality X1 and where C is any
uncountable linear ordering whose cartesian square is the union of
countably many chains.

Corollary

PFA implies that the class of countable linear orderings is equal
to {w’, w1, B, C*, C}*.
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Trees

Definition

For two trees S and T, by S <1 T we denote the fact that S can
be topologically embeded into T, i.e., that thereisf :S — T
which is strictly increasing and A-preserving.

Theorem (Laver, 1978)

Every class of o-scattered trees quasi-ordered by the relation <;
of topological embedding has a finite basis.

Theorem (T. 2000)

> This fails for the class A of Aronszajn trees even if the the
relation <7 is weakened to the relation S < T iff there is a
strictly increasing map from S to T.

» Assuming PFA the class (A, <) is generated by a discrete
chain L of Lipschitz trees such that (L/Z,<) is the
N,-saturated linear ordering of cardinality Ny = 2%,
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Tukey reductions

Definition

A partially ordered set P is Tukey reducible to a partially ordered
set @, in notation P <+ Q, if there isa map f : P — @ that maps
unbounded subsets of P to unbounded subsets of Q, or
equivalently, a map g : Q@ — P which maps cofinal subsets of Q to
cofinal subsets of P.

When P <+ Q and Q <7 P we write P =1 Q and say that P and
Q are Tukey equivalent or cofinaly similar.

Remark

In the class of (upwards) directed posets P =1 Q is equivalent to
saying that P and Q are isomorphic to cofinal subsets of a single
directed poset R.
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Examples: Ultrafilters

Proposition

The directed set [0]<“ of finite subsets of some infinite cardinal 6
realizes the maximal Tukey type among directed posets of
cardinality at most 6.

Theorem (Isbell 1964)

There is an ulltrafilter Uy,ax on w that realizes the maximal Tukey
type for directed sets of cardinality continuum.

Question (Isbell, 1964)
Is there any other Tukey type of nonprincipal ultrafilters on w?

Remark
IfU is a P-point ultraflter on w then U Z71 Upax.
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Five cofinal types

Theorem (T., 1985, 1996)
PFA implies that

1, w,wi,w X wy and [wy]<¥

are all Tukey types of directed sets of cardinality at most Nj.

Moreover, letting Dy =1, D1 = w, D» = w1, D3 = w X w1, and
Dy = [w1]=¥, every partially ordered set of cardinality at most ¥y
is Tukey equivalent to one of these:

» D5 niD; (i <5,n <w),

> Ro-1a @ ,nD; (2<i<5n<w),
> No - wi B mfwi]<Y (n < w),

> No - [wi]¥,

> Nl-l.
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Descriptive set theoretic context

Definition
Let D be a separable metric space and let < be a partial order on
D. We say that (D, <) is basic if
» for every x,y € D the least upper bound x V y exists and the
map V : D x D — D is continuous;

> every bounded sequence has converging subsequence;

> every converging sequence has bounded subsequence.

Remark

The topology of a basic order is uniquely determined by the order
itself. It is the topology of sequential convergence where a
sequence is set to be convergent if all of its subsequences have
further subsequences that are bounded.
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Important examples

Example

» P-point ultrafilters are basic orders.

» o-deals of compact subsets of a separable metric space with
the Vietoris topology.

» Analytic P-ideas on w are basic.

Theorem (Solecki-T., 2004)
Analytic basic orders are in fact Polish.

Proposition (Solecki-T., 2004)
Let D be a nonempty basic order.

» D js compact iff D =1 1.
» If D is analytic and not locally compact then NN <1 D.
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Automatic definability of <7

Theorem (Solecki-T., 2004)

Let D and E be basic orders. If D <+ E then there is a Borel
map g : E — D which witnesses this.

Corollary

Let D and E be basic orders such that D <t E. If E is analytic
then so is D.

Corollary

Let U and V be ultrafilters on w such thatV is a P-point . If
U <V then there is a continuous map g : V — U witnessing this.

Corollary

P-point ultrafilters have no more than continuum many
Tukey-predecessors.
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Basis problem for n-gaps

Notation:
Fix a countable index set N. For a,b C N, set

a C* biff a\ b is finite,

a_l biff an b is finite.
For X,9) C P(N), set

XLYiff (VaeX)(VbeQ) alb.

Xt ={b:(VacX)bnais finite}.
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Preideals
Definition
A preideal on a countable set N is a family | of subsets of N such
that if x € [ and y C x is infinite, then y € [.
Definition
Let ' ={I;: i € n} be a n-sequence of preideals on the set N and
let X be a family of subsets of n.

1. We say that I is separated if there exist subsets
ao, . ..,an—1 C N such that (;c,a; = 0 and x C* a; for all
xel; ien.

2. We say that I' is an X-gap if it is not separated, but
NicaXi =% 0 whenever x; € [';, A€ X.

Definition

When X = [n]? is the family of all subsets of n of cardinality 2, an
X-gap will be called an n-gap,

When X = {n} consists only of the total set n={0,...,n— 1},
then an X-gap will be called an n,-gap.
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Ordering gaps

Definition

The orthogonal of the gap INis [+ = (U,-En F,-)l. The gap Iis
called dense if It is just the family of finite subsets of N.
Definition

For I and A two n.-gaps on countable sets N and M, respectively,
we say that

r<A
if there exists a one-to-one map ¢ : N — M such that for i < n,
1. if x € T; then ¢(x) € A,.
2. If x € T} then ¢(x) € AF.
Two n,-gaps I and I are called equivalent if [ < T’ and if [" <T.
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Remark

>

When I is a n-gap, the second condition can be substituted
by saying that if x € T+ then ¢(x) € A™L.

Notice also that if A is a n-gap, [ is a ny-gap, and I < A,
then I' is an n-gap.

Another observation is that the above definition implies that
¢(x) € A+ if and only if x € T+, and

#(x) € AL if and only if x € T+.

Therefore the gaps {T++ : i < n} and {A++|,en 1 i < n} are
completely identified under the bijection ¢ : N — ¢“N.
There are other variants of the order < between gaps but all
lead essentially to the same theory.

Definition
An analytic n,-gap I is said to be a minimal analytic n,-gap if
for every other analytic n.-gap A, if A <T, then [ < A.
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Finite Basis Theorem for n-gaps
Theorem (Aviles-T., 2014)

Fix a natural number n. For every analytic n.-gap ' there exists a
minimal analytic n.-gap A such that A < T'. Moreover, up to
equivalence, there exist only finitely many minimal analytic
Ny-gaps.

Remark
Up to permutations there is exactly 5 minimal analytic 2-gaps.
Most of them already show up in the literature.

Corollary
Let U be a countable family of pairwise disjoint analytic open
subsets of BN\ N, and let {Uy, U1, Uz} C U be such that
Ug N Uy N Uy # 0. Then, there exists a point x € Uy N Uy N Us
such that

HUelU:xe U} <6l.

Moreover, 61 is optimal in this result.
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Theorem (T., 1999)

The class of non-metrizable separable compact sets of
Baire-class-1 functions defined on a Polish space has the 3-element
basis

{5.0.P},

where S is the split-interval, D the (separable version of the)
Alexandrov duplicate of the Cantor set, and P the one-point
compactification of the Cantor tree space.



Compact sets of Baire-class-1 functions

Theorem (T., 1999)

The class of non-metrizable separable compact sets of
Baire-class-1 functions defined on a Polish space has the 3-element
basis

{5.0.P},

where S is the split-interval, D the (separable version of the)
Alexandrov duplicate of the Cantor set, and P the one-point
compactification of the Cantor tree space.

Remark

If x is a non-Gg point of some compact set K of Baire-class-1
functions then K contains a topological copy of P where x plays
the role of point at infinity.
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Ramsey basis problems

Theorem (Ramsey 1930)

For every natural number k and every relation R C N¥ there is an
infinite set M C N such that R | M is (N, <)-canonical.

Definition
A relation R C N¥ js (N, <)-canonical on a set M C N if it is
~(N,<)-invariant on Mk, ie., if for (x; i < k),(yi: i < k)€ Mk,
(X()7 ...,Xk,l) ~(N,<) (yo, ...,yk,l) implies
R(Xo, ...,Xk_l) 4 R(yo, ...,yk_l)
where we put

(X,' i< k) ~(N,<) (y,- i< k)

ifofalli,j<k:

Xi < Xj =Yy <Yj,
Xi =Xj <= Yi =Y,
Xi > Xj <= Yi > Y.
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Recognizing canonical relations

Proposition

There is exactly eight canonical binary relations on N :

T7J—7:77éa<7>7<7>'

T and = are the only canonical equivalence relations on N.



Canonical equivalence relations

Theorem (Erdds-Rado 1950)

There is exactly 2% canonical equivalence relations on NI :
(xiti<k)~p(yiti<k)e(x:iel)=(yi:iel),
for | CH{0,...,k — 1}, i.e., for every equivalence relation E on
N = {(x;i:i<k)eNF:ixg<x3 < - < xi_1}
there is an infinite set M C N and a set | C {0, ..., k — 1} such that

EME =~ MK,
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Definition

A collection F of finite subsets of N is a barrier if every infinite
subset of N has an initial segment in F and if no two distinct
elements of F are comparable under inclusion.

Theorem (Pudlak-Radl, 1982)

For every equivalence relation E on some barrier B on N there is
an infinite set M C N and an internal irreducible mapping f on
B|M such that E | (B|M) = Ef.
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ultrafilter on N such that Y <t V. Then U is Rudin-Keisler
isomorphic to a countable Fubini power of V.
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Definition

A collection F of finite subsets of N is a barrier if every infinite
subset of N has an initial segment in F and if no two distinct
elements of F are comparable under inclusion.

Theorem (Pudlak-Radl, 1982)

For every equivalence relation E on some barrier B on N there is
an infinite set M C N and an internal irreducible mapping f on
B|M such that E | (B|M) = Ef.

Theorem (T., 2012)

Let V be a selective ultrafilter on N and let U be a non-principal
ultrafilter on N such that Y <t V. Then U is Rudin-Keisler
isomorphic to a countable Fubini power of V.

Corollary
Selective ultrafilters are Tukey minimal members of SN \ N.
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Theorem (Laver 1970)

For every natural number k and every set R C QK there is M C Q
order-isomorphic to Q such that

R is a (Q, <, <')-canonical relation on M,

where < is the usual ordering on Q and where <’ is a well-order of
Q of order-type w.

Theorem (Devlin 1979)

Among canonical equivalence relations E on QK with finitely
many classes there is the finest canonical equivalence relation
that has exactly ty = Tok11 classes,

where T, are tangent numbers given by

tanz =30 Lozn.

Thus, t1 =1, th =2, t3 =16, ta =272, .... .
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Remark

» There are also results about arbitrary canonical equivalence
relations on QX (Vuksanovic 2012) but perhaps here we
could have a result that would match Devlin’s in its clarity.

> Similar methods give similar results for other
ultrahomogeneous countable structures such as, for example,

the random graph.

Question
Let A be a countable ultrahomogeneous structure.

» Under which condition on A we can find an expansion A* with
finitely many relations such that every subset R of some finite
power A¥ is A*-canonical when restricted to some
substructure of A isomorphic to A?

» Under which additional assumptions (if any) can we conclude
that on any finite symmetric power AlK] there is the finest
canonical equivalence relation with finitely many classes?
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Ramsey basis results for top(Q)

Theorem (T., 1994)

There is an equivalence relation Eyy. on Q[ with infinitely many
classes e1, €, ..., €, ... such that if for some positive integer k the
closure X of some subset X of Q has its kth Cantor-Bendixson
derivative nonempty then

XP e £ 0 forall2 < i< 2k.
Moreover, if X is not a discrete subspace of Q then X2 N e # 0.

Corollary (Baumgartner, 1986)

The class of equivalence relations on Q2 (even those with finitely
many equivalence classes) does not have finite Ramsey basis.
Theorem (T., 1994)

The class of equivalence relations on Q12 with open equivalence
classes has 26-element Ramsey basis.
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Basis problems for R

Theorem (Sierpinski, 1933)

Let < be the usual lexicographic ordering of 2N, let <’ be a
well-ordering of 2% and let S denote the expanded structure

(2N, A, <, <'). Then for every positive integer k the finest
S-canonical equivalence relation ~& on (2M)K that has k!(k — 1)!
many classes has the property that every uncountable X C 2N
realizes all the classes.

Conjecture (Galvin, 1970)

For every positive integer k every equivalence relation on RIK! with
finitely many classes is S-canonical when restricted to some
uncountable set X C R.



Basis problems for R

Theorem (Sierpinski, 1933)

Let < be the usual lexicographic ordering of 2N, let <’ be a
well-ordering of 2% and let S denote the expanded structure

(2N, A, <, <'). Then for every positive integer k the finest
S-canonical equivalence relation ~& on (2M)K that has k!(k — 1)!
many classes has the property that every uncountable X C 2N
realizes all the classes.

Conjecture (Galvin, 1970)

For every positive integer k every equivalence relation on RIK! with
finitely many classes is S-canonical when restricted to some
uncountable set X C R.

Conjecture (Galvin, 1970)

Every equivalence relation on R with finitely many classes is
S-canonical when restricted to some topological copy of Q.
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Basis problems for wy, wo, ...

Theorem (T., 1987, 1994)

For every positive integer k there is an equivalence relation E on
[wk]¥*1 with uncountably many classes such that every
uncountable subset X of wy realizes all the classes of E.

Corollary
Galvin's Conjecture implies 250 > X,.

Question
Does Galvin's Conjecture require the continuum to be above the
first weakly inaccessible cardinal?
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Borel restriction

The Cantor space 2 as the Borel structure:
(2N, <, A)

where < is the lexicographical ordering and A the distance
function:

A(x,y) = min{n: x(n) # y(n)}.

Theorem (Galvin, 1968)

For every positive integer k every Borel set R C (2M) js
(2N, <, AA)-canonical on some perfect set P C 2N,

Theorem (Galvin 1968, Blass 1981)

Among (2N, <, AA)-canonical Borel equivalence relation on a given
finite symmetric power [2N]% with finitely many classes there is
the finest one which has exactly (k — 1)! many classes.
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> There is exactly two (2%, <, A)-canonical Borel equivalence
relations on [2]? with countably many classes: T and Ex.
» There is exactly seven (2N, <, A)-canonical Borel equivalence

relations on [2N]? given by the following seven conditions on
given two pairs {xp, x1} and {yo, y1} such that xo < x1 and

Yo < yi:

1. Xo = Xo,

2. X0 = Yo,

3. x1 =n,

4. X0 = yo and x1 = y1,
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6. A(Xo,Xl) = A(yo,yl) and Xo = Yo,
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Theorem (Taylor 1979, Lefmann 1983, Vlitas 2014)

> There is exactly two (2%, <, A)-canonical Borel equivalence
relations on [2]? with countably many classes: T and Ex.
» There is exactly seven (2N, <, A)-canonical Borel equivalence

relations on [2N]? given by the following seven conditions on
given two pairs {xp, x1} and {yo, y1} such that xo < x1 and

Yo <y
1. Xo = Xo,
2. X0 = Yo,
3. x1 =n,
4. xo = yo and xy = y1,
5. A(X07X1) = A(ymyl) and Xo = Xo,
6. A(Xo,Xl) = A(}/o,}ﬁ) and Xo = Yo,

7. A(X(),Xl) = A(y(),_yl) and X1 = Y1
> There is exactly twenty five (2V, <, A)-canonical Borel
equivalence relations on [21]3
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denote the statement that for every coloring x : Al A

/

there is B’ ¢ <g> such that x on (i) has < 7 values.



The arrow-notation

For two structures A and B of the same type, set

<i) = {A": A is a substructure of B isomorphic to A}.

For A,B and C of the same type and cardinals A and 7, let

c (B,

: o
denote the statement that for every coloring x : Al A

/

there is B’ ¢ <g> such that x on (i) has < 7 values. Let

C—(B)Y iff C—(B)}y,

C—[B]} iff C— (B



Examples



Examples

Theorem (Galvin 1970)
9 4 [4]3 but 10 — [4]3.



Examples

Theorem (Galvin 1970)
9 4 [4]3 but 10 — [4]3.

Theorem (Devlin, 1979)

Fix a positive integer k and let t;, = tan(®~1)(0) and consider the
rationals Q as ordered set.

> Q= (Q)f, forall | <w.
> Q7 [QlE.



Examples

Theorem (Galvin 1970)
9 4 [4]3 but 10 — [4]3.

Theorem (Devlin, 1979)

Fix a positive integer k and let t;, = tan(®~1)(0) and consider the
rationals Q as ordered set.

» Q — (Q)f, forall | < w.

Itk

> Q4 [Q]f.

Conjecture (Galvin 1970)
For every positive integer k,
» %o (Nl);(k!(kfl)! for all | < w,

> 2% A [Nl]il(k—l)!'
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More examples

Theorem (Galvin-Shelah 1973)

280 A N3 .

Theorem (T., 1987, 1994)

Ny /A [Nl]ﬁjl for all positive integers k.

Theorem (Devlin 1979, Folklore)

Fix a positive integer k and let t;, = tan(?~1)(0). Let R denote
the random graph and let Ky denote the complete graph on k
vertices.

» R — (R) forall | < w.
Ity
> R A [Rlg.



Ramsey degrees in Fraissé classes



Ramsey degrees in Fraissé classes

Definition
Let IC be a given class of finite L-structures.



Ramsey degrees in Fraissé classes

Definition

Let K be a given class of finite L-structures.

For A € K, let t(A,K) be the minimal number t (if it exists)
such that for every B in K and | < w there exists C in K such that

C — (B)..



Ramsey degrees in Fraissé classes
Definition
Let K be a given class of finite L-structures.

For A € K, let t(A,K) be the minimal number t (if it exists)
such that for every B in K and | < w there exists C in K such that

C — (B)..

Otherwise, put t(A, K) = cc.



Ramsey degrees in Fraissé classes

Definition

Let K be a given class of finite L-structures.

For A € K, let t(A,K) be the minimal number t (if it exists)
such that for every B in K and | < w there exists C in K such that

C — (B)..

Otherwise, put t(A, K) = cc.
We call t(A, K) the Ramsey degree of A in the class K. We say
that K has the Ramsey property if t(A,K) =1 for all A € K.



Ramsey degrees in Fraissé classes

Definition

Let K be a given class of finite L-structures.

For A € K, let t(A,K) be the minimal number t (if it exists)
such that for every B in K and | < w there exists C in K such that

C — (B)..

Otherwise, put t(A, K) = cc.
We call t(A, K) the Ramsey degree of A in the class K. We say
that K has the Ramsey property if t(A,K) =1 for all A € K.

Example

> Finite linearly ordered sets have Ramsey degree 1 in the class
of all finite linear orderings, i.e., Q — (n)f for all k,I,n < w.



Ramsey degrees in Fraissé classes

Definition

Let K be a given class of finite L-structures.

For A € K, let t(A,K) be the minimal number t (if it exists)
such that for every B in K and | < w there exists C in K such that

C — (B)..

Otherwise, put t(A, K) = cc.
We call t(A, K) the Ramsey degree of A in the class K. We say
that K has the Ramsey property if t(A,K) =1 for all A € K.

Example

> Finite linearly ordered sets have Ramsey degree 1 in the class
of all finite linear orderings, i.e., Q — (n)f for all k,I,n < w.
» Complete graphs have Ramsey degree 1 in the class of all
finite graphs, ie, R — (G)fk for all finite graphs G and
kI <w.
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Ramsey degrees via expansions

Fix a countable ultrahomogeneous (relational) L-structure F.

Let F* be an ultrahomogeneous L*-expansion of F, where L* adds
to L finitely many, say n, relational symbols {R; : i < n}.

For A € Age(F), set

XA ={(R; i< n)e[[2*": (ARs,..Ri_1) € Age(F*)}.

i<n

| XP.
J(A) = CEL
(A = TAw(a))

Proposition
If Age(F*) has the Ramsey property , then

t(A,Age(F)) < te«(A) for all A € Age(F),

and so, in particular t(A, Age(F)) < oo for all A € Age(F).
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Definition
For F and F* as above, we say that F* has the expansion
property relative to F whenever

VA* € Age(F*) 3B € Age(F) VB* € Age(F™)

[B*|L=B = A* < B

Proposition

If the expansion F* has both the Ramsey property and the
expansion property relative to F, then

t(A, Age(F)) = tg=(A) for all A € Age(F).
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Application to topological dynamics

Theorem (Kechris-Pestov-T., 2005, Nguyen Van Thé 2013)

Let F be a countable relational ultrahomogeneous structure and
let F* be its precompact relational expansion. The following are
equivalent:

» The action of Aut(F) on the space Xg+ of all F*-admissible
L* \ L-relations on F is the universal minimal flow of the
group Aut(F).

» F* has the Ramsey property as well as the expansion
property relative to F.

Theorem (Zucker 2014)

Let F be a countable locally finite ultrahomogeneous structure. If
the group Aut(F) has metrizable universal minimal flow then
t(A, Age(F)) < oo for all A € Age(F).



