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Univalent Type Theory

Equivalence

Fib f b = (a : A)× Id B b (f a)

isEquiv f = (b : B)→ isContr (Fib f b)

Equiv A B = (f : A→ B)× isEquiv f

We recall

isContr T = (t : T )× ((x : T )→ Id T t x)
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Univalent Type Theory

Univalent type theory

- Id A a0 a1

- 1a : Id A a a

- t(p) : B(a0)→ B(a1) if p : Id A a0 a1

- a proof of Id B(a) (t(1a) u) u if u : B(a)

- a proof of Id S (a, 1a) (x, p) for S = (x : A)× Id A a x and (x, p) : S

- the univalence axiom
The canonical map Id U A B → Equiv A B is an equivalence
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Univalent Type Theory

Univalent type theory

So univalent type theory is

(1) simple type theory extended with one universe
(or a sequence of cumulative universes)

(2) extended with the Id A a0 a1 introduced by Martin-Löf

(3) extended with the univalence axiom

Consistency of (1) + (2): interpretation of types as sets

The consistency strength of (1) + (2) is known

What about (1) + (2) + (3)? We answer this question later
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Univalent Type Theory

Equality in dependent sums

If B(x) is a family of types over A then

any p : Id A a0 a1 defines a transport function t(p) : B(a0)→ B(a1)

For instance, if A is the collection of sets, and B(X) is the collection X → X
then any isomorphism p : X0 ' X1 defines a transport function

B(X0)→ B(X1)

t(p) u0 = p ◦ u0 ◦ p−1

This was the notion of transport of structures considered by Bourbaki

Two structures are identified in
∑
X:A

B(X) if, and only if, they are isomorphic
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Univalent Type Theory

Univalent type theory

Univalent type theory is a suitable system for developing mathematics in such
a way that

it is impossible to formulate a statement which is not invariant with respect
to equivalences
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Univalent Type Theory

Stratification of types

A type A is a proposition

isProp A = (x0 x1 : A)→ Id A x0 x1

Notice that this itself is a type

A type is a set

isSet A = (x0 x1 : A)→ isProp (Id A x0 x1)

A type is a groupoid

isGroupoid A = (x0 x1 : A)→ isSet (Id A x0 x1)
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Univalent Type Theory

The Univalence Axiom

The univalence axiom also implies that

-two isomorphic sets are equal

-two isomorphic algebraic structures are equal

-two equivalent (in the categorical sense) groupoid are equal

-two equivalent categories are equal

The equality of a and b entails that any property of a is also a property of b
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Univalent Type Theory

Motivation for the term 〈〈groupoid 〉〉

If A is any type we have operations of types

1a : Id A a a

sym : Id A a0 a1 → Id A a1 a0

comp : Id A a0 a1 → Id A a1 a2 → Id A a0 a2

and we have e.g. for p : Id A a0 a1

Id (Id A a0 a1) (comp 1a0 p) p

This uses in a crucial way the new law for equality discovered by Martin-Löf
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Univalent Type Theory

Motivation for the term 〈〈groupoid 〉〉

If each Id A a0 a1 is a set, we can think of A as a groupoid in the 〈〈usual 〉〉

sense

An object is an element of type A

A morphism between a0 and a1 is an element of the set Id A a0 a1

Any morphism is an isomorphism
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Univalent Type Theory

Some propositions

We can prove, i.e. build terms of type

(A : U)→ isProp (isContr A)

(A : U)→ isProp (isProp A)

(A : U)→ isProp (isSet A)

(A B : U)→ (f : A→ B)→ isProp (isEquiv f)

But in general hasInv f is not a proposition

The type representing the univalence axiom is a proposition since it states
that a given map is an equivalence
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Univalent Type Theory

Function Extensionality

We can state, for C = (x : A)→ B

((x : A)→ Id B(x) (f x) (g x))→ Id C f g

but this is not a proposition
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Univalent Type Theory

Function Extensionality

One can state function extensionality as a proposition

The canonical map

Id C f g → ((x : A)→ Id B(x) (f x) (g x))

is an equivalence
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Univalent Type Theory

Function Extensionality

Function extensionality can also be stated as

((x : A)→ isProp B(x))→ isProp ((x : A)→ B(x))

It implies

((x : A)→ isSet B(x))→ isSet ((x : A)→ B(x))

This holds for A arbitrary type

If A is a set, the intuition is that it is the usual set of sections

If A is a groupoid, for instance, a groupoid defined by a group G with one
point 0, the intuition is that a family of sets over A is a set B(0) with a G-action,
and the dependent product is the set of fixed points B(0)G
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Univalent Type Theory

Algebraic structures

An algebraic structure is an element of a type of the form

(X : U)× (isSet X)× T (X)

sets with operations and properties

The type S of all these structures is not a set

It has a more complex notion of equality: each type Id S s0 s1 is a set and
not a proposition
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Univalent Type Theory

Representation of structures

The type of structures of semigroup on a type A

SemiG A = isSet A× (f : A→ A→ A)×
(x y z : A)→ Id A (f (f x y) z) (f x (f y z))

This type is always a set

The type of all semigroups is SG = (A : U)× SemiG A

A semigroup is a pair (A, p) with A : U and p : SemiG A

This type is a groupoid
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Univalent Type Theory

Representation of structures

If f : A→ B is an equivalence, we have by univalence Id U A B

sf : SemiG A→ SemiG B

Represents transport of (semigroup) structures along an equivalence f

16



Univalent Type Theory

Isomorphisms

If we have two semigroups (A, a) and (B, b) then an equivalence f : A → B
is an isomorphism if, and only if, we have a proof of

Id (SemiG B) (sf a) b
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Univalent Type Theory

Isomorphisms and equality

Using univalence, one can show

Theorem: If f : A → B is an isomorphism between (A, a) and (B, b) then
Id SG (A, a) (B, b)

This implies that we have Id T P (A, a) P (B, b) for any P : SG→ T

P (A, a) : T does not need to be a proposition

Any property/structure is transportable along an isomorphism
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Univalent Type Theory

Isomorphisms and equality

If (A, a) is commutative then so is (B, b)

If instead of semigroups, we consider commutative monoids

P (A, a) may be the associated group of fractions

If (A, a) and (B, b) are isomorphic then so are P (A, a) and P (B, b)
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Univalent Type Theory

Differences with set theory

Any property is transportable

No need of 〈〈critères de transportabilité 〉〉 as in set theory

〈〈Only practice can teach us in what measure the identification of two sets,
with or without additional structures, presents more advantage than inconvenient.
It is necessary in any case, when applying it, that we are not lead to describe non
transportable relations. 〉〉 Bourbaki, Théorie des Ensembles, Chapitre 4, Structures
(1957)

π ∈ A is a non transportable property of a group A

〈〈 to be solvable 〉〉 is a transportable property
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Univalent Type Theory

Isomorphisms and equality

Let us define Iso (A, a) (B, b) to be the type of pairs (f, p) where p is a proof
that f is an isomorphism

We have a canonical map

Id SG (A, a) (B, b)→ Iso (A, a) (B, b)

Theorem: This map is an equivalence
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Univalent Type Theory

Representation of structures

Notice that we can consider the structures of fixed-point functional

S A = isSet A× (Y : (A→ A)→ A)× (f : A→ A)× Id A (Y f) (f (Y f))

or even simpler

S A = isSet A× (A→ A)→ A

We can define what is an isomorphism for this notion of structures

Not so clear what should be a morphism for this notion of structure
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Univalent Type Theory

Univalent type theory

We define

PROP = (X : U)× isPropX

SET = (X : U)× isSetX

One can show

isSet PROP and isGroupoid SET
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Univalent Type Theory

Univalent type theory

This follows from

isProp B → isProp (Id U A B)

which follows from

isProp B → isProp (Equiv A B)

which follows from

isProp B → isProp (A→ B)

For this argument we have used that Id U A B and Equiv A B are equal,
which follows from the univalence axiom
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Univalent Type Theory

Univalent type theory

SET is not a set

bool is a set (non trivial but provable!)

We have (bool, p) : SET where p : isSet bool

The type Id SET (bool, p) (bool, p) is equal to Id U bool bool

By univalence the type Id U bool bool is equal to Equiv bool bool

This type has two distinct elements
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Univalent Type Theory

Univalent type theory

By a similar reasoning we can show that

The type of all groups/rings is a groupoid which is not a set

The collection of all groups/rings/posets forms a groupoid
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Univalent Type Theory

Univalent type theory

If we consider structures without automorphisms, they form a set

E.g. we can define the type of well-order structures WO X and then

(X : U)×WO X is a set

In general we have isSet A as soon as (a : X)→ isProp (Id A a a)
(Streicher, 1991)

If we form the type of all linear orders of fixed size n, this will define a
contractible type, since it is inhabited and any two elements are equal
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Univalent Type Theory

Univalent type theory

This is an important difference with set theory where the collection of all sets
of a given universe forms a set

〈〈Qualitative 〉〉 difference between a type like bool and the type SET of all sets

An element of SET can be thought of as 〈〈a set up to bijection 〉〉
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Univalent Type Theory

Posets and categories

In this approach

the notion of groupoid is more fondamental than the notion of category

A groupoid is defined as a type satisfying a property

In set theory, a groupoid is defined to be a category where any morphism is
an isomorphism
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Univalent Type Theory

Posets and categories

A preorder is a set A with a relation R(x, y) satisfying

(x y : A)→ isProp (R x y)

which is reflexive and transitive

A poset is a preorder such that the canonical implication

Id A x y → R x y ×R y x

is a logical equivalence
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Univalent Type Theory

Posets and categories

A category is a groupoid A with a relation Hom x y satisfying

(x y : A)→ isSet (Hom x y)

This family of sets is 〈〈 transitive 〉〉 (associative composition operation) and
〈〈 reflexive 〉〉 (we have a neutral element)

This corresponds to the notion of preorder

This family of sets is 〈〈 transitive 〉〉 (associative composition operation) and
〈〈 reflexive 〉〉 (we have a neutral element)

This corresponds to the notion of preorder
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Univalent Type Theory

Posets and categories

One can define Iso x y which is a set and show Iso x x

Iso x y = (f : Hom x y)× (g : Hom y x)× . . .

This defines a canonical map

Id A x y → Iso x y

For being a category we require this map to be an equivalence (bijection)
between the sets Id A x y and Iso x y
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Univalent Type Theory

Posets and categories

A category is defined as a structure on a groupoid

The univalence axiom implies that the groupoid of rings, for instance, has a
categorical structure

It also implies that two equivalent categories are equal
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Univalent Type Theory

Representation of categories

The notion of category has somewhat lost his special status

A category is a structure at the level of groupoids (among other structures)

Adjunction: Galois connection at the next level
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Univalent Type Theory

Complexity of equality

Here, in the definition of category, Hom x0 x1 has to be a set

This is formally similar to the definition of a locally small category

But what is crucial here is the

complexity of equality

of the type Hom x0 x1 and not its

set theoretic 〈〈size 〉〉
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Univalent Type Theory

More general structures

To be a 2-groupoid can be defined as

(x0 x1 : A)→ isGroupoid (Id A x0 x1)

The collection of all groupoids (with equivalences) form a 2-groupoid

The definition of the notion of 2-groupoid in set theory is quite complex

What is a 3-groupoid, . . . ?
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Univalent Type Theory

More general structures

〈〈 the intuition appeared that ∞-groupoids should constitute particularly
adequate models for homotopy types, the n-groupoids corresponding to truncated
homotopy types (with πi = 0 for i > n) 〉〉

Grothendieck, Sketch of a program, 1984

An ∞-groupoid should be considered to be a space up to homotopy

This is used in the reverse direction: use a combinatorial way to represent
homotopy types, due to Kan 1958, to define a model of type theory
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Univalent Type Theory

Connection with homotopy theory

A connection between Identity type as introduced by Martin-Löf and homotopy
theory was indicated in the work of Steve Awodey and Michael Warren

Homotopy theoretic models of identity types

pointing out the analogy between the elimination rule for identity type and
some notion used in an abstract framework for homotopy theory

Nicola Gambino and Richard Garner
The identity type weak factorisation system

Benno van den Berg and Richard Garner
Types are weak ω-groupoid
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Univalent Type Theory

Loop space

〈〈 Indeed, to apply Leray’s theory I needed to construct fibre spaces which did
not exist if one used the standard definition. Namely, for every space X, I needed
a fibre space E with base X and with trivial homotopy (for instance contractible).
But how to get such a space? One night in 1950, on the train bringing me back
from our summer vacation, I saw it in a flash: just take for E the space of paths
on X (with fixed origin a), the projection E → X being the evaluation map:
path → extremity of the path. The fibre is then the loop space of (X, a). I had
no doubt: this was it! . . . It is strange that such a simple construction had so
many consequences. 〉〉

J.-P. Serre, describing the 〈〈 loop space method 〉〉 introduced in his thesis (1951)
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Univalent Type Theory

Connection with homotopy theory

How do we know that the laws for univalent type theory are consistent?

For ordinary type theory, the proof theoretic strength is known (Γ0 if we don’t
have generalized inductive definitions)

We cannot use an interpretation where a type is interpreted as a set

Model where types are interpreted by Kan simplicial sets (Voevodsky 2010)

This model reduces the consistency of univalent type theory to ZFC with ω+1
inaccesibles
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Univalent Type Theory

Connection with homotopy theory

The work

Cubical type theory: a constructive model of type theory,
Cyril Cohen, T.C., Simon Huber, Anders Mörtberg,
to appear in postproceeding of TYPES 2015

provides a constructive model of univalent type theory, inspired by the simplicial
set model

This work has been formalized in the proof assistent NuPrl (Mark Bickford)
establishing in this way that the axiom of univalence does not add any proof
theoretic power to type theory
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Univalent Type Theory

Connection with constructive mathematics

This model is closely connected to questions that appear in Bishop’s approach
to constructive mathematics

-the notion of dependent sums Cf. Exercice 3.2 in Bishop’s book and A course
in constructive algebra, Mines, Richman, Ruitenburg, p. 18

〈〈An element of the disjoint union of a family (Ai)i∈I is a pair (i, x) such that
i ∈ I and x ∈ Ai. Two elements (i, x) and (j, y) of the disjoint sum are equal if
i = j and Ai

j(x) = y 〉〉

-what should be a category?
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Univalent Type Theory

Representing mathematics

Bourbaki tried to represent in a rigourous way the theory of categories

They stopped

Will the framework of univalent type theory help for a rigourous presentation
of category theory?
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Univalent Type Theory

Connection with homotopy theory

This connection also suggests a 〈〈purely logical 〉〉 way to develop homotopy
theory

E.g. one can prove, in univalent type theory, that composition of paths is
commutative in any Id (Id A a a) 1a 1a and this can be seen as a purely logical
explanation of the fact that higher homotopy groups (i.e. πn(X,x) for n > 1)
are commutative

All notions used in such a development are invariant by homotopy equivalence
(e.g. cohomology groups, themselves invariant, but are usually defined using non
invariant notions)
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Univalent Type Theory

Resizing axiom

Connections between complexity of equality and 〈〈set-theoretic 〉〉 size?

U0 : U1 : U2 : . . .

Theorem: (Nicolai Kraus and Christian Sattler) U0 is not a set, U1 is not a
groupoid, . . .

If a type is a proposition, can we consider it to be of type U?

E.g. (X : U)× Id U A X is contractible, can we postulate that it is of type
U without contradiction?

Can we postulate PROP : U without contradiction?
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