
Univalent Type Theory

Thierry Coquand

Tutorial for the Logic Colloquium 2016, Leeds



Univalent Type Theory

Univalent type theory

- stratified notion of 〈〈being the same 〉〉 for mathematical collections (at least
isomorphisms and categorical equivalences)

- one goal: to design a formalism in which it is impossible to formulate a
statement which is not invariant with respect to equivalences

- simple type theory and connections with set theory

- limitations of simple type theory, addition of universes

- introduction of equality as a type family

- what should be the axiom of extensionality for this universe?

1



Univalent Type Theory

New laws for equality

Id A a0 a1 can be thought of as the type of 〈〈 identifications 〉〉 of a0 and a1

Intuitively, if A is a set there is at most one such identification

If A is the collection of all sets, an identification is a bijection

If A is a collection of structure, an identification is an isomorphism

Martin-Löf expressed Id A a0 a1 as a type since he wanted to develop
systematically the notion of propositions as types

Similarly, de Bruijn had a notion of 〈〈book equality 〉〉, but his motivation was
to design a good way to represent mathematical proofs in a computer

2



Univalent Type Theory

New laws for equality

If B(x) is a family of types over A then

any p : Id A a0 a1 defines a transport function t(p) : B(a0)→ B(a1)

For instance, if A is the collection of sets, and B(X) is the collection X → X
then any isomorphism p : X0 ' X1 defines a transport function

B(X0)→ B(X1)

t(p) u0 = p ◦ u0 ◦ p−1

This was the notion of transport of structures considered by Bourbaki

3



Univalent Type Theory

New laws for equality

How can we have a formal system with Id U N Q where N type for natural
numbers and Q for rational numbers?

Don’t we have 2/3 ∈ Q and 0 ∈ N?

This is where the use of type theory is important

The statement 2/3 ∈ Q is not a well-formed proposition in type theory

4



Univalent Type Theory

Types and abstraction

Story of J. Reynolds

One semester, large parallel course in complex variables with two sections

-in one section, Professor Descartes, z = x+ iy

-in one section, Professor Bessel, z = ρeiθ

〈〈After presenting the definitions of complex numbers, both went on in
explaining how to convert reals into complex numbers. how to add, multiply, and
conjugate complex numbers, and how to find their magnitude 〉〉

5



Univalent Type Theory

Types and abstraction

〈〈Then, after their first classes, an unfortunate mistake in the register’s office
cause the two sections to be interchanged 〉〉

No problem however!

〈〈The reason was that they both had an intuitive understanding of type. Having
defined complex numbers and the primitive operations upon them, thereafter they
spoke at a level of abstraction that encompossed both of their definitions 〉〉

The moral of the story is

Type structure is a syntactic discipline for enforcing levels of abstraction

6



Univalent Type Theory

New laws for equality

We have an element in Id S (a, 1a) (x, p)

where S = (x : A)× Id A a x and x : A and p : Id A a x

Does not this imply that we have equality of 1a and p?

Equality in 〈〈sigma 〉〉 types is subtle!

7



Univalent Type Theory

New laws for equality

In set theory if we have (a0, b0) = (a1, b1) (in any set) we get

a0 = a1 and b0 = b1

In a type (x : A)×B(x) what does the equality of (a0, b0) and (a1, b1) mean?

We can form Id A a0 a1 since a0 and a1 are of type A

But b0 is of type B(a0) and b1 is of type B(a1), so we cannot compare them!

If p : Id A a0 a1 we have a transport function t(p) : B(a0)→ B(a1)

We ask for a proof of equality of t(p) b0 and b1, both are in B(a1)

8



Univalent Type Theory

New laws for equality

So an equality between (a0, b0) and (a1, b1) is intuitively given by an equality
p : Id A a0 a1 and an equality ptoof in Id B(a1) (t(p) b0) b1

9



Univalent Type Theory

New laws for equality

Semantically let us look at the example S the type of sets

T (X) is the set XA

We want to understand the 〈〈equality 〉〉 in
∑
X:S

T (X)

If u : X0 ' X1 we have a transport function

t(u) : T (X0)→ T (X1)

t(u) f0 = u ◦ f0

And an equality (X0, f0) ' (X1, f1) will be given by u : X0 ' X1 such that
u ◦ f0 = f1

10



Univalent Type Theory

New laws for equality

In this way, the new law discovered by Martin-Löf (1973) that we have an
element in Id S (a, 1a) (x, p)

where S = (x : A)× Id A a x and x : A and p : Id A a x

can be understood as: we look at the transport function t(p) for the family
C(z) = Id A a z over A and t(p) 1a is equal to p

11



Univalent Type Theory

New laws for equality

Usual formulation is

(x : A)→ (p : Id A a x)→ C(a, 1a)→ C(x, p)

which generalizes the usual 〈〈elimination 〉〉 rule

(x : A)→ Id A a x→ P (a)→ P (x)

12



Univalent Type Theory

New laws for equality

Let us 〈〈explain 〉〉 this law on the following example

Let S be the collection of 〈〈all 〉〉 sets, seen as a groupoid

We fix a set A and define Q to be the collection
∑
X:S

A ' X

Any element (X, f) of Q can be identified to (A, id) since f = f ◦ id, and
actually, this identification is uniquely determined

Q seen as a groupoid is equivalent to the groupoid with one object and one
morphism

13



Univalent Type Theory

New laws for equality

Let us define

isContr T = (t : T )× ((x : T )→ Id T t x)

This describes when a collection is 〈〈equivalent 〉〉 to a singleton

The new law of equality can be expressed as inhabitant of

isContr ((x : A)× Id A a x)

for any type A and a element of A

14



Univalent Type Theory

New laws for equality

To summarize we extend type theory with the constants

- Id A a0 a1

- 1a : Id A a a

- t(p) : B(a0)→ B(a1) if p : Id A a0 a1

- a proof of Id B(a) (t(1a) u) u if u : B(a)

- a proof of Id S (a, 1a) (x, p) for S = (x : A)× Id A a x and (x, p) : S

15



Univalent Type Theory

New laws for equality

These laws were discovered in 1973

Should equality be extensional?

Actually, how to express the extensionality axioms in this context?

An answer to this question is given by Voevodsky (2010)

16



Univalent Type Theory

Equivalence

A simple and uniform notion of equivalence for f : A→ B

If A and B are sets we get back the notion of bijection between sets

If A and B are propositions we get back the notion of logical equivalence
between propositions

If A and B are groupoids we get back the notion of categorical equivalence
between groupoids

17



Univalent Type Theory

Equivalence

Fib f b = (a : A)× Id B b (f a)

isEquiv f = (b : B)→ isContr (Fib f b)

Equiv A B = (f : A→ B)× isEquiv f

We recall

isContr T = (t : T )× ((x : T )→ Id T t x)

18



Univalent Type Theory

Equivalence

If A is a type, let us unfold isEquiv id

(b : A)→ isContr ((a : A)× Id A b a)

This is exactly the new law of equality discovered by Martin-Löf

So the identity function is always an equivalence

Hence we have a proof of Equiv A A

19



Univalent Type Theory

Equivalence

It follows directly from the definition of

isEquiv f = (b : B)→ isContr ((a : A)× Id B (f a) b)

that we have

isEquiv f → (B → A)

20



Univalent Type Theory

Equivalence

In particular, if we define A↔ B by (A→ B)× (B → A)

Equiv A B → A↔ B

equivalence implies logical equivalence

21



Univalent Type Theory

The Univalence Axiom

The univalence axiom states roughly that if

f : A→ B

is an equivalence then A and B are equal

More exactly, since Equiv A A we have a map Id U A B → Equiv A B

The canonical map Id U A B → Equiv A B is an equivalence

This generalizes Church’s axiom of extensionality for propositions

Voevodsky has shown that this axiom implies function extensionality

22



Univalent Type Theory

The Univalence Axiom

If p : Id U A B we have, by defining C(X) = Equiv A X

t(p) : C(A)→ C(B)

But we have a proof q : Equiv A A = C(A)

So we have t(p) q : C(B) = Equiv A B

This defines a function f : Id U A B → Equiv A B

And the univalence axiom is that this function is an equivalence

The statement itself of the univalence axiom uses the representation of
propositions as types

23



Univalent Type Theory

New laws for equality

- Id A a0 a1

- 1a : Id A a a

- t(p) : B(a0)→ B(a1) if p : Id A a0 a1

- a proof of Id B(a) (t(1a) u) u if u : B(a)

- a proof of Id S (a, 1a) (x, p) for S = (x : A)× Id A a x and (x, p) : S

- the univalence axiom

24



Univalent Type Theory

New laws for equality

Voevodsky was looking for a formalism in which it is 〈〈 impossible to formulate
a statement which is not invariant with respect to equivalences 〉〉

The formalism of type theory (as designed by de Bruijn, Martin-Löf, . . . ) is
such a formalism, provided we add the univalence axiom

25



Univalent Type Theory

The Univalence Axiom

The canonical map Id U A B → Equiv A B is an equivalence

We have seen that equivalence implies logical equivalence

So the univalence axiom implies

Equiv A B → Id U A B

but it is much more subtle

26



Univalent Type Theory

Equivalence and 〈〈 isomorphism 〉〉

If we define hasInv f to be the type

(g : B → A)× Id (B → B) (f ◦ g) id × Id (A→ A) (g ◦ f) id

we have

isEquiv f → hasInv f

27



Univalent Type Theory

〈〈Grad Students 〉〉 Lemma

Lemma: hasInv f → isEquiv f

If we define

Iso A B = (f : A→ B)× hasInv f

we get

(Equiv A B)↔ Iso A B

28



Univalent Type Theory

The Univalence Axiom

Id U (A×B) (B ×A)

Id U (A× (B × C)) ((A×B)× C)

Any property satisfied by A × B that can be expressed in type theory is also
satisfied by B ×A

This is not the case in set theory

(1,−1) ∈ N× Z (1,−1) /∈ Z× N

29



Univalent Type Theory

Stratification of types

A type A is a proposition

(x0 x1 : A)→ Id A x0 x1

Notice that this itself is a type

A type is a set

(x0 x1 : A)→ isProp(Id A x0 x1)

A type is a groupoid

(x0 x1 : A)→ isSet(Id A x0 x1)

30



Univalent Type Theory

Stratification of types

The notions of propositions, sets, groupoids have now aquired a precise
meaning in type theory

They will be used with this meaning in the rest of this tutorial

Type theory appears as a generalization of set theory

This stratification corresponds to the informal stratification of collection of
mathematical objects that was described at the beginning of the talk

31



Univalent Type Theory

The Univalence Axiom

This axiom also implies that

-two isomorphic sets are equal

-two isomorphic algebraic structures are equal

-two equivalent (in the categorical sense) groupoid are equal

-two equivalent categoruies are equal

The equality of a and b entails that any property of a is also a property of b

32



Univalent Type Theory

The Univalence Axiom

If A and B are propositions, we shall see that A → A and B → B are also
propositions, so we have proofs of

Id (A→ A) (g ◦ f) id Id (B → B) (f ◦ g) id

for any f : A→ B and g : B → A

So we have hasInv f and by the Grad Students Lemma isEquiv f

By univalence Id U A B

Actually we have Equiv (Id U A B) (A↔ B)

Univalence axiom implies Church’s extensionality axiom for propositions

33



Univalent Type Theory

Motivation for the term 〈〈proposition 〉〉

N.G. de Bruijn introduced the notion of proof irrelevance

His example was the following

If we want to represent the logarithm function it should be a function log x p
of 2 arguments

x : R and p a proof that we have x > 0

We do not want log x p to depend on p

For this, it is enough to have Id (x > 0) p q for p and q are of type x > 0

This 〈〈proof irrelevance 〉〉 is here used as a definition of the notion of proposition

34



Univalent Type Theory

Motivation for the term 〈〈set 〉〉

If A represents a set we want Id A a0 a1 to be a proposition

At most one identification between a0 and a1

If A and B are sets, we can show

Equiv (Equiv A B) (Iso A B)

where

Iso A B = (f : A→ B)× hasInv A B f

35



Univalent Type Theory

Motivation for the term 〈〈groupoid 〉〉

If A is any type we have operations of types

1a : Id A a a

sym : Id A a0 a1 → Id A a1 a0

comp : Id A a0 a1 → Id A a1 a2 → Id A a0 a2

and we have e.g. for p : Id A a0 a1

Id (Id A a0 a1) (comp 1a0 p) p

This uses in a crucial way the new law for equality discovered by Martin-Löf

36



Univalent Type Theory

Motivation for the term 〈〈groupoid 〉〉

If each Id A a0 a1 is a set, we can think of A as a groupoid in the 〈〈usual 〉〉

sense

An object is an element of type A

A morphism between a0 and a1 is an element of the set Id A a0 a1

Any morphism is an isomorphism

37



Univalent Type Theory

Difference between properties and structure

A property is a dependent family which is always a proposition

E.g. isContr A, isProp A, isSet A are properties of A

isEquiv f is a property of f

On the other hand hasInv A B f is a structure for f in general

The univalence axiom is stated as a proposition

38



Univalent Type Theory

Difference between properties and structure

For instance we can build a term of type

(A : U)→ isProp (isContr A)

All these facts correspond to knwon observations in the theory of homotopy

The fact that we can do this only using the finite list of rules about equality,
mainly the new Marin-Löf law of equality and the univalence axiom, and the rules
of type theory, is quite remarkable

39


