
Spatial Logic of Tangled Closure
and Derivative Operators

Rob Goldblatt

Victoria University of Wellington

Logic Colloquium 2016

University of Leeds, 31 July – 6 August

LC2016 Leeds 1 / 35



Joint work with Ian Hodkinson

Papers:

Spatial logic of modal mu-calculus and tangled closure operators.
arXiv

The tangled derivative logic of the real line and zero-dimensional
spaces. Advances in Modal Logic, vol. 11. www.aiml.net

LC2016 Leeds 2 / 35

www.aiml.net


What is Spatial Logic ?

By a spatial logic, we understand any formal language interpreted over
a class of structures featuring geometrical entities and relations,
broadly construed.
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Basic modal language L2

a set of propositional variables/atoms p, q, . . .

Boolean connectives:

¬ϕ ϕ ∧ ψ ϕ ∨ ψ ϕ→ ψ ϕ↔ ψ

box modality 2ϕ

diamond modality 3ϕ is ¬2¬ϕ
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Kripke Semantics for L2

Kripke frame: a directed graph F = (W,R) with R ⊆W ×W .

Successor set: R(x) = {y : xRy}

A model on F : assigns to each formula ϕ a truth set [[ϕ]] ⊆W .

Truth at a point: x |= ϕ means x ∈ [[ϕ]].

Semantic conditions:

[[¬ϕ]] = W \ [[ϕ]]

[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]],

x |= 2ϕ iff R(x) ⊆ [[ϕ]]

x |= 3ϕ iff R(x) ∩ [[ϕ]] 6= ∅.

∴ [[3ϕ]] = R−1[[ϕ]] !!!!
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Truth of ϕ in a model: means that [[ϕ]] = W .
This is first-order definable in the structure

(W,R, {[[p]] : p is an atom})

by the sentence ∀xϕ∗(x), where

(2ϕ)∗(x) is ∀y(xRy → ϕ∗(y))

(3ϕ)∗(x) is ∃y(xRy ∧ ϕ∗(y))

Validity of ϕ in frame F :
Means that ϕ is true in every model on F .

i.e. ϕ is true at every point in every model on F .

This is monadic-second-order definable in F by ∀p1 · · · ∀pn∀xϕ∗(x)

LC2016 Leeds 6 / 35



Truth of ϕ in a model: means that [[ϕ]] = W .
This is first-order definable in the structure

(W,R, {[[p]] : p is an atom})

by the sentence ∀xϕ∗(x), where

(2ϕ)∗(x) is ∀y(xRy → ϕ∗(y))

(3ϕ)∗(x) is ∃y(xRy ∧ ϕ∗(y))

Validity of ϕ in frame F :
Means that ϕ is true in every model on F .

i.e. ϕ is true at every point in every model on F .

This is monadic-second-order definable in F by ∀p1 · · · ∀pn∀xϕ∗(x)

LC2016 Leeds 6 / 35



Truth of ϕ in a model: means that [[ϕ]] = W .
This is first-order definable in the structure

(W,R, {[[p]] : p is an atom})

by the sentence ∀xϕ∗(x), where

(2ϕ)∗(x) is ∀y(xRy → ϕ∗(y))

(3ϕ)∗(x) is ∃y(xRy ∧ ϕ∗(y))

Validity of ϕ in frame F :
Means that ϕ is true in every model on F .

i.e. ϕ is true at every point in every model on F .

This is monadic-second-order definable in F by ∀p1 · · · ∀pn∀xϕ∗(x)

LC2016 Leeds 6 / 35



Topological semantics for L2

Let X be a topological space.

A model on X assigns to each formula ϕ a truth set [[ϕ]] ⊆ X, with

[[¬ϕ]] = X \ [[ϕ]]

[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]],

[[2ϕ]] = int[[ϕ]], the interior of [[ϕ]]

∴ [[3ϕ]] = cl[[ϕ]], the closure of [[ϕ]]

x |= 2ϕ iff there is an open set O with x ∈ O ⊆ [[ϕ]].

x |= 3ϕ iff every open neighbourhood of x intersects [[ϕ]].

LC2016 Leeds 7 / 35



Topological semantics for L2

Let X be a topological space.

A model on X assigns to each formula ϕ a truth set [[ϕ]] ⊆ X, with

[[¬ϕ]] = X \ [[ϕ]]

[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]],

[[2ϕ]] = int[[ϕ]], the interior of [[ϕ]]

∴ [[3ϕ]] = cl[[ϕ]], the closure of [[ϕ]]

x |= 2ϕ iff there is an open set O with x ∈ O ⊆ [[ϕ]].

x |= 3ϕ iff every open neighbourhood of x intersects [[ϕ]].

LC2016 Leeds 7 / 35



Logic of a space X := {ϕ : ϕ is valid in X}

The logic of any space includes S4.

The logic of any separable dense-in-itself metric space is exactly
S4. This includes the Euclidean spaces Rn for all n ≥ 1, the
rationals Q, Cantor space, Baire space,. . .

I Due to McKinsey & Tarski 1948: Some Theorems About the
Sentential Calculi of Lewis and Heyting.

I Separability constraint removed by Rasiowa & Sikorski 1963.

interest?
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C.I. Lewis 1932

ϕ J ψ defined as ¬3(ϕ ∧ ¬ψ)

S4 defined as S1+ 33ϕ J 3ϕ

S1 AXIOMS RULES

(ϕ ∧ ψ) J (ψ ∧ ϕ) uniform substitution for atoms
(ϕ ∧ ψ) J ϕ

ϕ J (ϕ ∧ ϕ)
ϕ, ψ

ϕ ∧ ψ
((ϕ ∧ ψ) ∧ χ) J (ϕ ∧ (ψ ∧ χ))

ϕ J ¬¬ϕ ϕ, ϕ J ψ

ψ
((ϕ J ψ) ∧ (ψ J χ)) J (ϕ J χ)

(ϕ ∧ (ϕ J ψ)) J ψ
(ϕ J ψ) ∧ (ψ J ϕ), χ

χ(ψ/ϕ)
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Standard definition of S4

To a suitable basis for non-modal propositional calculus add
the axioms

2(ϕ→ ψ)→ (2ϕ→ 2ψ)
2ϕ→ ϕ
2ϕ→ 22ϕ

and rule
ϕ

2ϕ

This is due to Gödel 1933

with 2ϕ written as Bϕ “ϕ is provable”.

Equivalent to Lewis’ system with Becker’s additional axiom
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Frames for S4:

F = (W,R) validates S4 iff R is reflexive and transitive (a quasi-order).

2ϕ→ ϕ corresponds to reflexivity.
2ϕ→ 22ϕ corresponds to transitivity.

In any S4-frame, the collection

{R(x) : x ∈W}

is a basis for the Alexandroff topology on W , in which

cl(S) = R−1(S)

The resulting topological semantics coincides with the Kripke
semantics.
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Tarski 1938 : Sentential calculus and topology

Gave a topological interpretation of connectives that validates
intuitionistic logic:

[[p]] = any open set
[[¬ϕ]] = interior of X \ [[ϕ]]

[[ϕ→ ψ]] = interior of (X \ [[ϕ]]) ∪ [[ψ]].

Showed that the logic of any dissectable space is exactly the
intuitionistic calculus.

Included a proof that any separable dense-in-itself metric space is
dissectable.
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Tarski’s Original Dissection Theorem:

Let X be a dense-in-itself normal topological space with a countable
basis of open sets.

Let G be a non-empty open subset of X, and let r < ω.

Then G can be partitioned into non-empty subsets

G1, . . . ,Gr,B

such that the Gi’s are all open and

cl(G) \G ⊆ clB ⊆ clG1 ∩ . . . ∩ clGr.

[Proof credited to Samuel Eilenberg]
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McKinsey and Tarski

1944 The Algebra of Topology

Defined a closure algebra as a Boolean algebra with a unary
operation Cx having x ≤ Cx = CCx

C(x+ y) = Cx+ Cy

C0 = 0

Showed: if X a dissectable space, any finite closure algebra
embeddable into the closure algebra of subsets of some open
subset of X.

Works for any dissectable closure algebra in place of (the closure
algebra of) X.
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The modal mu-calculus language Lµ2
Allows formation of the least fixed point formula

µp.ϕ

when p is positive in ϕ.

The greatest fixed point formula νp.ϕ is

¬µp.ϕ(¬p/p).

Semantics in a model on a frame or space:

[[µp.ϕ]] is the least fixed point of the operator S 7→ [[ϕ]]p:=S

[[µp.ϕ]] =
⋂
{S ⊆W : [[ϕ]]p:=S ⊆ S}

[[νp.ϕ]] is the greatest fixed point:

[[νp.ϕ]] =
⋃
{S ⊆W : S ⊆ [[ϕ]]p:=S}
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The tangle modality language L〈t〉2

Allows formation of the formula

〈t〉Γ

when Γ is any finite non-empty set of formulas.

Semantics of 〈t〉 in a model on a frame:
x |= 〈t〉Γ iff there is an endless R-path

xRx1 · · ·xnRxn+1 · · · · · ·

in W with each member of Γ being true at xn for infinitely many n.
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Cluster analysis

A transitive frame (W,R) is a partially ordered set of clusters,
equivalence classes under the relation

x ≡ y iff x = y or xRyRx.

Put Cx = {y : x ≡ y}, and lift R to a partial order of clusters by

CxRCy iff xRy.

If the frame is finite, an endless R-path must eventually enter some
non-degenerate cluster and stay there.

x |= 〈t〉Γ iff there is a y with xRy and yRy and each
member of Γ true at some point of the cluster Cy.

LC2016 Leeds 17 / 35



Cluster analysis

A transitive frame (W,R) is a partially ordered set of clusters,
equivalence classes under the relation

x ≡ y iff x = y or xRyRx.

Put Cx = {y : x ≡ y}, and lift R to a partial order of clusters by

CxRCy iff xRy.

If the frame is finite, an endless R-path must eventually enter some
non-degenerate cluster and stay there.

x |= 〈t〉Γ iff there is a y with xRy and yRy and each
member of Γ true at some point of the cluster Cy.

LC2016 Leeds 17 / 35



〈t〉Γ is definable in Lµ2
In any model on a transitive frame,

[[〈t〉Γ]] =
⋃
{S ⊆W : S ⊆

⋂
γ∈Γ

R−1([[γ]] ∩ S)}

i.e. [[〈t〉Γ]] is the largest set S such that

for all γ ∈ Γ, S ⊆ R−1([[γ]] ∩ S).

But R−1[[ϕ]] = [[3ϕ]], and
⋂

interprets
∧

,
so 〈t〉Γ has the same meaning as the Lµ2-formula

νp.
∧

γ∈Γ
3(γ ∧ p)

Suggests a topological semantics: replace R−1 by closure

LC2016 Leeds 18 / 35



〈t〉Γ is definable in Lµ2
In any model on a transitive frame,

[[〈t〉Γ]] =
⋃
{S ⊆W : S ⊆

⋂
γ∈Γ

R−1([[γ]] ∩ S)}

i.e. [[〈t〉Γ]] is the largest set S such that

for all γ ∈ Γ, S ⊆ R−1([[γ]] ∩ S).

But R−1[[ϕ]] = [[3ϕ]], and
⋂

interprets
∧

,
so 〈t〉Γ has the same meaning as the Lµ2-formula

νp.
∧

γ∈Γ
3(γ ∧ p)

Suggests a topological semantics: replace R−1 by closure

LC2016 Leeds 18 / 35



〈t〉Γ is definable in Lµ2
In any model on a transitive frame,

[[〈t〉Γ]] =
⋃
{S ⊆W : S ⊆

⋂
γ∈Γ

R−1([[γ]] ∩ S)}

i.e. [[〈t〉Γ]] is the largest set S such that

for all γ ∈ Γ, S ⊆ R−1([[γ]] ∩ S).

But R−1[[ϕ]] = [[3ϕ]], and
⋂

interprets
∧

,
so 〈t〉Γ has the same meaning as the Lµ2-formula

νp.
∧

γ∈Γ
3(γ ∧ p)

Suggests a topological semantics: replace R−1 by closure

LC2016 Leeds 18 / 35



〈t〉Γ is definable in Lµ2
In any model on a transitive frame,

[[〈t〉Γ]] =
⋃
{S ⊆W : S ⊆

⋂
γ∈Γ

R−1([[γ]] ∩ S)}

i.e. [[〈t〉Γ]] is the largest set S such that

for all γ ∈ Γ, S ⊆ R−1([[γ]] ∩ S).

But R−1[[ϕ]] = [[3ϕ]], and
⋂

interprets
∧

,
so 〈t〉Γ has the same meaning as the Lµ2-formula

νp.
∧

γ∈Γ
3(γ ∧ p)

Suggests a topological semantics: replace R−1 by closure

LC2016 Leeds 18 / 35



Origin of the tangle modality:

van Benthem 1976
The bisimulation-invariant fragment of first-order logic is
equivalent to L2.

This holds relative to any elementary class of frames (e.g. transitive)
And relative to the class of finite frames [Rosen 1997]

Janin & Walukiewicz 1993
The bisimulation-invariant fragment of monadic
second-order logic is equivalent to Lµ2.

Dawar & Otto 2009
over the class of finite transitive frames, the
bisimulation-invariant fragment of monadic second-order
logic collapses to that of first-order logic, with both
fragments, and Lµ2, being equivalent to the tangle
extension L〈t〉2 .
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Fernández-Duque 2011

coined the name “tangle”.

axiomatised the L〈t〉2 -logic of the class of all (finite)
S4-frames, as S4 +

Fix: 〈t〉Γ→ 3(γ ∧ 〈t〉Γ), all γ ∈ Γ.

Ind: 2(ϕ→
∧
γ∈Γ 3(γ ∧ ϕ))→ (ϕ→ 〈t〉Γ).

provided its topological interpretation, with closure in
place of R−1.
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The derivative modality language L[d]

Replace 2 and 3 by [d] and 〈d〉, with [[〈d〉ϕ]] = R−1[[ϕ]]

Define 2ϕ as ϕ ∧ [d]ϕ, and 3ϕ = ϕ ∨ 〈d〉ϕ.

In a topological space X, the derivative of a subset S is

derivS = {x ∈ X : x is a limit point of S}.

x ∈ derivS iff every neighbourhood O of x has (O \ {x}) ∩ S 6= ∅.

In a model on X, [[〈d〉ϕ]] = deriv[[ϕ]], so

x |= 〈d〉ϕ iff every punctured neighbourhood of x intersects [[ϕ]],

x |= [d]ϕ iff some punctured neighbourhood of x is included in [[ϕ]].
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L[d] is more expressive than L2

[[2ϕ]] = the interior of [[ϕ]]. [[3ϕ]] = the closure of [[ϕ]].

Validity of the R-transitivity axiom

4 : 〈d〉〈d〉ϕ→ 〈d〉ϕ

holds iff X is a TD space, meaning deriv{x} is always closed.
[Aull & Thron 1962]

Validity of the axiom
D : 〈d〉>

holds iff X is dense-in-itself, i.e. no isolated points.

Validity of D in a frame holds iff R is total: ∀x∃y(xRy).
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Shehtman 1990:
Derived sets in Euclidean spaces and modal logic.
Proved

the L[d]-logic of every zero-dimensional separable dense-in-itself
metric space is KD4.
the L[d]-logic of the Euclidean space Rn for any n ≥ 2 is

KD4 + G1 : 〈d〉p ∧ 〈d〉¬p→ 〈d〉(3p ∧3¬p)

Conjectured
the L[d]-logic of the real line R is KD4 + G2, where Gn is∧

i≤n
〈d〉Qi → 〈d〉

(∧
i≤n

3¬Qi
)
, with Qi = pi ∧

∧
i 6=j≤n

¬pj .

[Proven later by Shehtman, and by Lucero-Bryan]
Asked

Is KD4G1 the largest logic of any dense-in-itself metric space?
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The tangled derivative language L〈dt〉2

Replace 〈t〉 by 〈dt〉.
Interpret 〈dt〉 by replacing R−1 by deriv:

In a model on space X,

[[〈dt〉Γ]] = the tangled derivative of {[[γ]] : γ ∈ Γ}.

=
⋃
{S ⊆ X : S ⊆

⋂
γ∈Γ

deriv([[γ]] ∩ S)}.

Whereas,

[[〈t〉Γ]] = the tangled closure of {[[γ]] : γ ∈ Γ}.

=
⋃
{S ⊆ X : S ⊆

⋂
γ∈Γ

closure([[γ]] ∩ S)}.
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Defining 〈t〉 from 〈dt〉

In a topological space X, 〈t〉Γ is equivalent to

(
∧

Γ) ∨ 〈d〉(
∧

Γ) ∨ 〈dt〉Γ

if, and only if X is a TD space.
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Axioms for logics:
Let L be any logic in some language.

Lt is the extension of L by the tangle axioms

Fix: 〈dt〉Γ→ 〈d〉(γ ∧ 〈dt〉Γ)

Ind: 2(ϕ→
∧
γ∈Γ 〈d〉(γ ∧ ϕ))→ (ϕ→ 〈dt〉Γ).

L.U is the extension of L that has the universal modality ∀ with
semantics

x |= ∀ϕ iff for all y ∈W , y |= ϕ,

the S5 axioms and rules for ∀, and the axiom ∀ϕ→ [d]ϕ.

L.UC is the extension of L.U for which C is the axiom

∀(2ϕ ∨2¬ϕ)→ (∀ϕ ∨ ∀¬ϕ),

expressing topological connectedness.
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Let X be any dense-in-itself metric space

language logic complete over X sound over X

L〈t〉2 S4t yes

L2∀ S4.UC if X connected

L〈t〉2∀ S4t.UC if X connected

L[d] KD4G1
1 if G1 valid in X

L〈dt〉[d] KD4G1t if G1 valid in X

L[d]∀ KD4G1.UC if X connected & validates G1

L〈dt〉[d]∀ KD4G1t.UC if X connected & validates G1

1answers Shehtman’s question
LC2016 Leeds 27 / 35



The Case of R:

The L〈dt〉[d] -logic of R is KD4G2t.

The L〈dt〉[d]∀-logic of R is KD4G2t.UC.

The Zero-Dimensional case:
Let X be any zero-dimensional dense-in-itself metric space.

The L[d]-logic of X is KD4.

The L〈dt〉[d] -logic of X is KD4t.

The L〈dt〉[d]∀-logic of X is KD4t.U.
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Strong completeness: ‘consistent sets are satisfiable’

Let L be KD4G1 or KD4G1t or S4t. Then any countable
L-consistent set of formulas is satisfiable in any dense-in-itself
metric space.

Any countable KD4t-consistent set of formulas is satisfiable in any
zero-dimensional dense-in-itself metric space.

Can fail for frame and spatial semantics for “large enough” sets:

{3pi : i < κ} ∪ {¬3(pi ∧ pj) : i < j < κ}

Not satisfiable in frame F if κ > cardF .

Not satisfiable in space X if κ > 2cardX .
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Strong completeness can fail for Kripke semantics for countable Γ:

Σ = {3p0}∪
{2(p2n → 3(p2n+1 ∧ q)),2(p2n+1 → 3(p2n+2 ∧ ¬q)) : n < ω}

Σ ∪ {¬〈t〉{q,¬q}} is finitely satisfiable, so is K4t-consistent, but is not
satisfiable in any Kripke model.

Also shows that in the canonical model for K4t, the ‘Truth Lemma’ fails.
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Proving a logic L is complete over space X:

1 Prove the finite model property for L over Kripke frames:
if L 0 ϕ, then ϕ is falsifiable in some suitable finite frame F |=L.

2 Construct a surjective d-morphism f : X � F :

f−1(R−1(S)) = deriv f−1(S).

Such an f preserves validity of formulas from X to F , so X 6|= ϕ.
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Modified Tarski Dissection Theorem

Let X be a dense-in-itself metric space.
Then X is dissectable as follows:

Let G be a non-empty open subset of X, and let r, s < ω.

Then G can be partitioned into non-empty subsets

G1, . . . ,Gr,B0, . . . ,Bs

such that the Gi’s are all open and

cl(Gi) \Gi = deriv(Bj) = cl(G) \ (G1 ∪ · · · ∪Gr).
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This encodes a d-morphism G� F ,
if F is a point-generated S4-frame.
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Further dissections of a dense-in-itself metric X

1 Let G be a non-empty open subset of X, and let k < ω. Then there
are pairwise disjoint non-empty subsets I0, . . . , Ik ⊆ G satisfying

deriv Ii = cl(G) \G for each i ≤ k.

2 Let X be zero-dimensional.
If G is a non-empty open subset of X, and n < ω, then G can be
partitioned into non-empty open subsets G0, . . . ,Gn such that

cl(Gi) \Gi = cl(G) \G for each i ≤ n.
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