Spatial Logic of Tangled Closure and Derivative Operators

Rob Goldblatt

Victoria University of Wellington

Logic Colloquium 2016 University of Leeds, 31 July – 6 August

Joint work with Ian Hodkinson

Papers:

- Spatial logic of modal mu-calculus and tangled closure operators. *arXiv*
- The tangled derivative logic of the real line and zero-dimensional spaces. *Advances in Modal Logic, vol. 11.* www.aiml.net

What is Spatial Logic?

By a spatial logic, we understand any formal language interpreted over a class of structures featuring geometrical entities and relations, broadly construed.

Basic modal language \mathcal{L}_{\Box}

- a set of propositional variables/atoms p, q, \ldots
- Boolean connectives:

$$\neg\varphi \quad \varphi \land \psi \quad \varphi \lor \psi \quad \varphi \to \psi \quad \varphi \leftrightarrow \psi$$

- box modality $\Box \varphi$
- diamond modality $\Diamond \varphi$ is $\neg \Box \neg \varphi$

Kripke frame: a directed graph $\mathcal{F} = (W, R)$ with $R \subseteq W \times W$. Successor set: $R(x) = \{y : xRy\}$

A model on \mathcal{F} : assigns to each formula φ a truth set $\llbracket \varphi \rrbracket \subseteq W$. Truth at a point: $x \models \varphi$ means $x \in \llbracket \varphi \rrbracket$. Semantic conditions:

$$\begin{split} \llbracket \neg \varphi \rrbracket &= W \setminus \llbracket \varphi \rrbracket \\ \llbracket \varphi \wedge \psi \rrbracket &= \llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket, \\ x &\models \Box \varphi \quad \text{iff} \ R(x) \subseteq \llbracket \varphi \rrbracket \\ x &\models \Diamond \varphi \quad \text{iff} \ R(x) \cap \llbracket \varphi \rrbracket \neq \emptyset. \end{split}$$

Kripke frame: a directed graph $\mathcal{F} = (W, R)$ with $R \subseteq W \times W$. Successor set: $R(x) = \{y : xRy\}$

A model on \mathcal{F} : assigns to each formula φ a truth set $\llbracket \varphi \rrbracket \subseteq W$. Truth at a point: $x \models \varphi$ means $x \in \llbracket \varphi \rrbracket$.

Semantic conditions:

$$\begin{bmatrix} \neg \varphi \end{bmatrix} = W \setminus \llbracket \varphi \end{bmatrix}$$
$$\llbracket \varphi \land \psi \rrbracket = \llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket,$$
$$x \models \Box \varphi \quad \text{iff} \ R(x) \subseteq \llbracket \varphi \rrbracket$$
$$x \models \Diamond \varphi \quad \text{iff} \ R(x) \cap \llbracket \varphi \rrbracket \neq \emptyset.$$

Kripke frame: a directed graph $\mathcal{F} = (W, R)$ with $R \subseteq W \times W$. Successor set: $R(x) = \{y : xRy\}$

A model on \mathcal{F} : assigns to each formula φ a truth set $\llbracket \varphi \rrbracket \subseteq W$. Truth at a point: $x \models \varphi$ means $x \in \llbracket \varphi \rrbracket$. Semantic conditions:

$$\begin{split} \llbracket \neg \varphi \rrbracket &= W \setminus \llbracket \varphi \rrbracket \\ \llbracket \varphi \wedge \psi \rrbracket &= \llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket, \\ x &\models \Box \varphi \quad \text{iff} \ R(x) \subseteq \llbracket \varphi \rrbracket \\ x &\models \diamond \varphi \quad \text{iff} \ R(x) \cap \llbracket \varphi \rrbracket \neq \emptyset. \end{split}$$

Kripke frame: a directed graph $\mathcal{F} = (W, R)$ with $R \subseteq W \times W$. Successor set: $R(x) = \{y : xRy\}$

A model on \mathcal{F} : assigns to each formula φ a truth set $\llbracket \varphi \rrbracket \subseteq W$. Truth at a point: $x \models \varphi$ means $x \in \llbracket \varphi \rrbracket$. Semantic conditions:

$$\begin{bmatrix} \neg \varphi \end{bmatrix} = W \setminus \llbracket \varphi \end{bmatrix}$$
$$\llbracket \varphi \land \psi \rrbracket = \llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket,$$
$$x \models \Box \varphi \quad \text{iff} \ R(x) \subseteq \llbracket \varphi \rrbracket$$
$$x \models \Diamond \varphi \quad \text{iff} \ R(x) \cap \llbracket \varphi \rrbracket \neq \emptyset.$$

Truth of φ in a model: means that $\llbracket \varphi \rrbracket = W$.

This is first-order definable in the structure

 $(W, R, \{\llbracket p \rrbracket : p \text{ is an atom}\})$

by the sentence $\forall x \varphi^*(x)$, where

 $(\Box \varphi)^*(x) \text{ is } \forall y(xRy \to \varphi^*(y))$ $(\diamond \varphi)^*(x) \text{ is } \exists y(xRy \land \varphi^*(y))$

Validity of φ in frame \mathcal{F} :

• Means that φ is true in every model on \mathcal{F} .

i.e. φ is true at every point in every model on \mathcal{F} .

• This is monadic-second-order definable in \mathcal{F} by $\forall p_1 \cdots \forall p_n \forall x \varphi^*(x)$

Truth of φ in a model: means that $\llbracket \varphi \rrbracket = W$. This is first-order definable in the structure

 $(W, R, \{\llbracket p \rrbracket : p \text{ is an atom}\})$

by the sentence $\forall x \varphi^*(x)$, where

 $(\Box \varphi)^*(x) \text{ is } \forall y(xRy \to \varphi^*(y))$ $(\diamond \varphi)^*(x) \text{ is } \exists y(xRy \land \varphi^*(y))$

Validity of φ in frame \mathcal{F} :

• Means that φ is true in every model on \mathcal{F} .

i.e. φ is true at every point in every model on \mathcal{F} .

• This is monadic-second-order definable in \mathcal{F} by $\forall p_1 \cdots \forall p_n \forall x \varphi^*(x)$

Truth of φ in a model: means that $\llbracket \varphi \rrbracket = W$. This is first-order definable in the structure

 $(W, R, \{\llbracket p \rrbracket : p \text{ is an atom}\})$

by the sentence $\forall x \varphi^*(x)$, where

 $(\Box \varphi)^*(x) \text{ is } \forall y(xRy \to \varphi^*(y))$ $(\diamond \varphi)^*(x) \text{ is } \exists y(xRy \land \varphi^*(y))$

Validity of φ in frame \mathcal{F} :

• Means that φ is true in every model on \mathcal{F} .

i.e. φ is true at every point in every model on \mathcal{F} .

• This is monadic-second-order definable in \mathcal{F} by $\forall p_1 \cdots \forall p_n \forall x \varphi^*(x)$

Topological semantics for \mathcal{L}_{\Box}

Let X be a topological space.

A model on X assigns to each formula φ a truth set $\llbracket \varphi \rrbracket \subseteq X$, with

$$\begin{split} \llbracket \neg \varphi \rrbracket &= X \setminus \llbracket \varphi \rrbracket \\ \llbracket \varphi \wedge \psi \rrbracket &= \llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket, \\ \llbracket \Box \varphi \rrbracket &= \operatorname{int} \llbracket \varphi \rrbracket, \text{ the interior of } \llbracket \varphi \rrbracket \\ \therefore \llbracket \Diamond \varphi \rrbracket &= \operatorname{cl} \llbracket \varphi \rrbracket, \text{ the closure of } \llbracket \varphi \rrbracket \end{split}$$

 $x \models \Box \varphi$ iff there is an open set O with $x \in O \subseteq \llbracket \varphi \rrbracket$.

 $x \models \Diamond \varphi$ iff every open neighbourhood of x intersects $\llbracket \varphi \rrbracket$.

Topological semantics for \mathcal{L}_{\Box}

Let X be a topological space.

A model on X assigns to each formula φ a truth set $\llbracket \varphi \rrbracket \subseteq X$, with

$$\begin{split} \llbracket \neg \varphi \rrbracket &= X \setminus \llbracket \varphi \rrbracket \\ \llbracket \varphi \wedge \psi \rrbracket &= \llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket, \\ \llbracket \Box \varphi \rrbracket &= \operatorname{int} \llbracket \varphi \rrbracket, \quad \text{the interior of } \llbracket \varphi \rrbracket \\ \therefore \llbracket \Diamond \varphi \rrbracket &= \operatorname{cl} \llbracket \varphi \rrbracket, \quad \text{the closure of } \llbracket \varphi \rrbracket \end{split}$$

 $x \models \Box \varphi$ iff there is an open set O with $x \in O \subseteq \llbracket \varphi \rrbracket$. $x \models \Diamond \varphi$ iff every open neighbourhood of x intersects $\llbracket \varphi \rrbracket$.

• The logic of any space includes S4.

- The logic of any separable dense-in-itself metric space is exactly S4. This includes the Euclidean spaces \mathbb{R}^n for all $n \ge 1$, the rationals \mathbb{Q} , Cantor space, Baire space,...
 - Due to McKinsey & Tarski 1948: Some Theorems About the Sentential Calculi of Lewis and Heyting.
 - Separability constraint removed by Rasiowa & Sikorski 1963.

• The logic of any space includes S4.

- The logic of any separable dense-in-itself metric space is exactly S4. This includes the Euclidean spaces \mathbb{R}^n for all $n \ge 1$, the rationals \mathbb{Q} , Cantor space, Baire space,...
 - ► Due to McKinsey & Tarski 1948: Some Theorems About the Sentential Calculi of Lewis and Heyting.
 - Separability constraint removed by Rasiowa & Sikorski 1963.

- The logic of any space includes S4.
- The logic of any separable dense-in-itself metric space is exactly S4. This includes the Euclidean spaces ℝⁿ for all n ≥ 1, the rationals Q, Cantor space, Baire space,...
 - ► Due to McKinsey & Tarski 1948: Some Theorems About the Sentential Calculi of Lewis and Heyting.
 - Separability constraint removed by Rasiowa & Sikorski 1963.

- The logic of any space includes S4.
- The logic of any separable dense-in-itself metric space is exactly S4. This includes the Euclidean spaces ℝⁿ for all n ≥ 1, the rationals Q, Cantor space, Baire space,...
 - Due to McKinsey & Tarski 1948: Some Theorems About the Sentential Calculi of Lewis and Heyting.
 - Separability constraint removed by Rasiowa & Sikorski 1963.

- The logic of any space includes S4.
- The logic of any separable dense-in-itself metric space is exactly S4. This includes the Euclidean spaces ℝⁿ for all n ≥ 1, the rationals Q, Cantor space, Baire space,...
 - Due to McKinsey & Tarski 1948: Some Theorems About the Sentential Calculi of Lewis and Heyting.
 - Separability constraint removed by Rasiowa & Sikorski 1963.

C.I. Lewis 1932

$$\varphi \rightarrow \psi$$
 defined as $\neg \diamondsuit (\varphi \land \neg \psi)$

S4 defined as S1+ $\Diamond \Diamond \varphi \rightarrow \Diamond \varphi$

S1 AXIOMS	RULES
$(\varphi \wedge \psi)$ -3 $(\psi \wedge \varphi)$	uniform substitution for atoms
$(\varphi \wedge \psi) \dashv \varphi$	
$\varphi \dashv (\varphi \land \varphi)$	$\left \begin{array}{c} arphi, \psi \\ \overline{arphi \wedge \psi} \end{array} ight $
$((\varphi \land \psi) \land \chi) \dashv (\varphi \land (\psi \land \chi))$	
$\varphi \dashv \neg \neg \varphi$	$\frac{\varphi, \varphi \neg \psi}{\psi}$
$((\varphi \dashv \psi) \land (\psi \dashv \chi)) \dashv (\varphi \dashv \chi)$	7
$(\varphi \land (\varphi \dashv \psi)) \dashv \psi$	$\frac{(\varphi \dashv \psi) \land (\psi \dashv \varphi), \chi}{\chi(\psi/\varphi)}$

Standard definition of S4

To a suitable basis for non-modal propositional calculus add the axioms

$$\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$$
$$\Box \varphi \to \varphi$$
$$\Box \varphi \to \Box \Box \varphi$$

and rule

$$\frac{\varphi}{\Box \varphi}$$

This is due to Gödel 1933

with $\Box \varphi$ written as $B \varphi$ " φ is provable".

Equivalent to Lewis' system with Becker's additional axiom

Standard definition of S4

To a suitable basis for non-modal propositional calculus add the axioms

$$\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$$
$$\Box \varphi \to \varphi$$
$$\Box \varphi \to \Box \Box \varphi$$

and rule

$$\frac{\varphi}{\Box \varphi}$$

This is due to Gödel 1933

with $\Box \varphi$ written as $B\varphi$ " φ is provable".

Equivalent to Lewis' system with Becker's additional axiom

Frames for S4:

 $\mathcal{F} = (W, R)$ validates S4 iff R is reflexive and transitive (a quasi-order).

 $\Box \varphi \rightarrow \varphi \qquad \text{corresponds to reflexivity.}$

 $\Box \varphi \rightarrow \Box \Box \varphi$ corresponds to transitivity.

In any S4-frame, the collection

 $\{R(x): x \in W\}$

is a basis for the Alexandroff topology on W, in which

 $\operatorname{cl}(S) = R^{-1}(S)$

The resulting topological semantics coincides with the Kripke semantics.

Frames for S4:

 $\mathcal{F} = (W, R)$ validates S4 iff R is reflexive and transitive (a quasi-order).

- $\Box \varphi \rightarrow \varphi$ corresponds to reflexivity.
- $\Box \varphi \rightarrow \Box \Box \varphi$ corresponds to transitivity.

In any S4-frame, the collection

 $\{R(x): x \in W\}$

is a basis for the Alexandroff topology on W, in which

 $\operatorname{cl}(S) = \mathbb{R}^{-1}(S)$

The resulting topological semantics coincides with the Kripke semantics.

Tarski 1938 : Sentential calculus and topology

 Gave a topological interpretation of connectives that validates intuitionistic logic:

 $\llbracket p \rrbracket = \text{any open set}$ $\llbracket \neg \varphi \rrbracket = \text{interior of } X \setminus \llbracket \varphi \rrbracket$ $\llbracket \varphi \rightarrow \psi \rrbracket = \text{interior of } (X \setminus \llbracket \varphi \rrbracket) \cup \llbracket \psi \rrbracket.$

- Showed that the logic of any *dissectable* space is exactly the intuitionistic calculus.
- Included a proof that any separable dense-in-itself metric space is dissectable.

Tarski 1938 : Sentential calculus and topology

 Gave a topological interpretation of connectives that validates intuitionistic logic:

 $\llbracket p \rrbracket = \text{any open set}$ $\llbracket \neg \varphi \rrbracket = \text{interior of } X \setminus \llbracket \varphi \rrbracket$ $\llbracket \varphi \rightarrow \psi \rrbracket = \text{interior of } (X \setminus \llbracket \varphi \rrbracket) \cup \llbracket \psi \rrbracket.$

- Showed that the logic of any *dissectable* space is exactly the intuitionistic calculus.
- Included a proof that any separable dense-in-itself metric space is dissectable.

Tarski's Original Dissection Theorem:

Let X be a dense-in-itself normal topological space with a countable basis of open sets.

```
Let \mathbb{G} be a non-empty open subset of X, and let r < \omega.
```

Then $\ensuremath{\mathbb{G}}$ can be partitioned into non-empty subsets

 $\mathbb{G}_1,\ldots,\mathbb{G}_r,\mathbb{B}$

such that the \mathbb{G}_i 's are all open and

 $\operatorname{cl}(\mathbb{G}) \setminus \mathbb{G} \subseteq \operatorname{cl} \mathbb{B} \subseteq \operatorname{cl} \mathbb{G}_1 \cap \ldots \cap \operatorname{cl} \mathbb{G}_r.$

[Proof credited to Samuel Eilenberg]

1944 The Algebra of Topology

• Defined a closure algebra as a Boolean algebra with a unary operation Cx having x < Cx = CCx

$$\begin{aligned} \mathsf{C}(x+y) &= \mathsf{C}x + \mathsf{C}y\\ \mathsf{C}0 &= 0 \end{aligned}$$

• Showed: if *X* a *dissectable* space, any finite closure algebra embeddable into the closure algebra of subsets of some open subset of *X*.

Works for any *dissectable* closure algebra in place of (the closure algebra of) *X*.

1944 The Algebra of Topology

• Defined a closure algebra as a Boolean algebra with a unary operation Cx having x < Cx = CCx

$$\begin{aligned} \mathsf{C}(x+y) &= \mathsf{C}x + \mathsf{C}y\\ \mathsf{C}0 &= 0 \end{aligned}$$

• Showed: if *X* a *dissectable* space, any finite closure algebra embeddable into the closure algebra of subsets of some open subset of *X*.

Works for any *dissectable* closure algebra in place of (the closure algebra of) X.

The modal mu-calculus language \mathcal{L}^{μ}_{\Box}

Allows formation of the least fixed point formula

$\mu p. \varphi$

when p is positive in φ .

The greatest fixed point formula $\nu p.\varphi$ is

 $\neg \mu p.\varphi(\neg p/p).$

Semantics in a model on a frame or space:

 $\llbracket \mu p. \varphi \rrbracket$ is the least fixed point of the operator $S \mapsto \llbracket \varphi \rrbracket_{p:=S}$

$$\llbracket \mu p.\varphi \rrbracket = \bigcap \{ S \subseteq W : \llbracket \varphi \rrbracket_{p:=S} \subseteq S \}$$

 $\llbracket \nu p. \varphi \rrbracket$ is the greatest fixed point:

$$\llbracket \nu p.\varphi \rrbracket = \bigcup \{ S \subseteq W : S \subseteq \llbracket \varphi \rrbracket_{p:=S} \}$$

The modal mu-calculus language \mathcal{L}^{μ}_{\Box} Allows formation of the least fixed point formula

 $\mu p.\varphi$

when p is positive in φ .

The greatest fixed point formula $\nu p.\varphi$ is

 $\neg \mu p.\varphi(\neg p/p).$

Semantics in a model on a frame or space:

 $\llbracket \mu p. \varphi \rrbracket$ is the least fixed point of the operator $S \mapsto \llbracket \varphi \rrbracket_{p:=S}$

$$\llbracket \mu p.\varphi \rrbracket = \bigcap \{ S \subseteq W : \llbracket \varphi \rrbracket_{p:=S} \subseteq S \}$$

 $\llbracket \nu p. \varphi \rrbracket$ is the greatest fixed point:

$$\llbracket \nu p.\varphi \rrbracket = \bigcup \{ S \subseteq W : S \subseteq \llbracket \varphi \rrbracket_{p:=S} \}$$

The tangle modality language $\mathcal{L}_{\Box}^{\langle t \rangle}$

Allows formation of the formula

 $\langle t \rangle \Gamma$

when Γ is any finite non-empty set of formulas.

Semantics of $\langle t \rangle$ in a model on a frame: $x \models \langle t \rangle \Gamma$ iff there is an endless *R*-path

 $xRx_1\cdots x_nRx_{n+1}\cdots\cdots$

in W with each member of Γ being true at x_n for infinitely many n.

The tangle modality language $\mathcal{L}_{\Box}^{\langle t \rangle}$

Allows formation of the formula

 $\langle t \rangle \Gamma$

when Γ is any finite non-empty set of formulas.

Semantics of $\langle t \rangle$ in a model on a frame: $x \models \langle t \rangle \Gamma$ iff there is an endless *R*-path

 $xRx_1\cdots x_nRx_{n+1}\cdots\cdots$

in W with each member of Γ being true at x_n for infinitely many n.

Cluster analysis

A transitive frame (W, R) is a partially ordered set of clusters, equivalence classes under the relation

 $x \equiv y$ iff x = y or xRyRx.

Put $C_x = \{y : x \equiv y\}$, and lift R to a partial order of clusters by $C_x R C_y$ iff x R y.

If the frame is finite, an endless R-path must eventually enter some non-degenerate cluster and stay there.

 $x \models \langle t \rangle \Gamma$ iff there is a *y* with *xRy* and *yRy* and each member of Γ true at some point of the cluster C_y .

Cluster analysis

A transitive frame (W, R) is a partially ordered set of clusters, equivalence classes under the relation

 $x \equiv y$ iff x = y or xRyRx.

Put $C_x = \{y : x \equiv y\}$, and lift R to a partial order of clusters by

 $C_x R C_y$ iff x R y.

If the frame is finite, an endless *R*-path must eventually enter some non-degenerate cluster and stay there.

 $x \models \langle t \rangle \Gamma$ iff there is a *y* with *xRy* and *yRy* and each member of Γ true at some point of the cluster C_y .

$\langle t \rangle \Gamma$ is definable in \mathcal{L}^{μ}_{\Box}

In any model on a transitive frame,

$$\llbracket \langle t \rangle \Gamma \rrbracket = \bigcup \{ S \subseteq W : S \subseteq \bigcap_{\gamma \in \Gamma} R^{-1}(\llbracket \gamma \rrbracket \cap S) \}$$

i.e. $[\![\langle t \rangle \Gamma]\!]$ is the largest set S such that

for all
$$\gamma \in \Gamma$$
, $S \subseteq R^{-1}(\llbracket \gamma \rrbracket \cap S)$.

But $R^{-1}[\![\varphi]\!] = [\![\Diamond \varphi]\!]$, and \bigcap interprets \bigwedge , so $\langle t \rangle \Gamma$ has the same meaning as the \mathcal{L}^{μ}_{\Box} -formula

$$\nu p. \bigwedge_{\gamma \in \Gamma} \diamondsuit(\gamma \land p)$$

Suggests a topological semantics: replace R^{-1} by closure

$\langle t \rangle \Gamma$ is definable in \mathcal{L}^{μ}_{\Box}

In any model on a transitive frame,

$$\llbracket \langle t \rangle \Gamma \rrbracket = \bigcup \{ S \subseteq W : S \subseteq \bigcap_{\gamma \in \Gamma} R^{-1}(\llbracket \gamma \rrbracket \cap S) \}$$

i.e. $[\![\langle t \rangle \Gamma]\!]$ is the largest set S such that

for all
$$\gamma \in \Gamma$$
, $S \subseteq R^{-1}(\llbracket \gamma \rrbracket \cap S)$.

But $R^{-1}\llbracket\varphi\rrbracket = \llbracket\Diamond\varphi\rrbracket$, and \bigcap interprets \bigwedge , so $\langle t \rangle \Gamma$ has the same meaning as the \mathcal{L}^{μ}_{\Box} -formula

$$\nu p. \bigwedge_{\gamma \in \Gamma} \diamondsuit(\gamma \land p)$$

Suggests a topological semantics: replace R^{-1} by closure

$\langle t \rangle \Gamma$ is definable in \mathcal{L}^{μ}_{\Box}

In any model on a transitive frame,

$$\llbracket \langle t \rangle \Gamma \rrbracket = \bigcup \{ S \subseteq W : S \subseteq \bigcap_{\gamma \in \Gamma} R^{-1}(\llbracket \gamma \rrbracket \cap S) \}$$

i.e. $[\![\langle t \rangle \Gamma]\!]$ is the largest set S such that

for all
$$\gamma \in \Gamma$$
, $S \subseteq R^{-1}(\llbracket \gamma \rrbracket \cap S)$.

But
$$R^{-1}\llbracket \varphi \rrbracket = \llbracket \Diamond \varphi \rrbracket$$
, and \bigcap interprets \bigwedge ,
so $\langle t \rangle \Gamma$ has the same meaning as the \mathcal{L}^{μ}_{\Box} -formula

$$\nu p. \bigwedge_{\gamma \in \Gamma} \diamondsuit(\gamma \land p)$$

Suggests a topological semantics: replace R^{-1} by closure

$\langle t \rangle \Gamma$ is definable in \mathcal{L}^{μ}_{\Box}

In any model on a transitive frame,

$$\llbracket \langle t \rangle \Gamma \rrbracket = \bigcup \{ S \subseteq W : S \subseteq \bigcap_{\gamma \in \Gamma} R^{-1}(\llbracket \gamma \rrbracket \cap S) \}$$

i.e. $[\![\langle t \rangle \Gamma]\!]$ is the largest set S such that

for all
$$\gamma \in \Gamma$$
, $S \subseteq R^{-1}(\llbracket \gamma \rrbracket \cap S)$.

But
$$R^{-1}\llbracket \varphi \rrbracket = \llbracket \diamondsuit \varphi \rrbracket$$
, and \bigcap interprets \bigwedge ,
so $\langle t \rangle \Gamma$ has the same meaning as the \mathcal{L}^{μ}_{\Box} -formula

$$\nu p. \bigwedge_{\gamma \in \Gamma} \diamondsuit(\gamma \land p)$$

Suggests a topological semantics: replace R^{-1} by closure

van Benthem 1976

The bisimulation-invariant fragment of first-order logic is equivalent to \mathcal{L}_{\Box} .

This holds relative to any elementary class of frames (e.g. transitive) And relative to the class of finite frames [Rosen 1997]

Janin & Walukiewicz 1993

The bisimulation-invariant fragment of monadic second-order logic is equivalent to \mathcal{L}^{μ}_{\Box} .

Dawar & Otto 2009

van Benthem 1976

The bisimulation-invariant fragment of first-order logic is equivalent to $\mathcal{L}_{\Box}.$

This holds relative to any elementary class of frames (e.g. transitive) And relative to the class of finite frames [Rosen 1997]

Janin & Walukiewicz 1993

The bisimulation-invariant fragment of monadic second-order logic is equivalent to \mathcal{L}^{μ}_{\Box} .

Dawar & Otto 2009

van Benthem 1976

The bisimulation-invariant fragment of first-order logic is equivalent to \mathcal{L}_{\Box} .

This holds relative to any elementary class of frames (e.g. transitive) And relative to the class of finite frames [Rosen 1997]

Janin & Walukiewicz 1993

The bisimulation-invariant fragment of monadic second-order logic is equivalent to \mathcal{L}^{μ}_{\Box} .

Dawar & Otto 2009

van Benthem 1976

The bisimulation-invariant fragment of first-order logic is equivalent to \mathcal{L}_{\Box} .

This holds relative to any elementary class of frames (e.g. transitive) And relative to the class of finite frames [Rosen 1997]

Janin & Walukiewicz 1993

The bisimulation-invariant fragment of monadic second-order logic is equivalent to \mathcal{L}^{μ}_{\Box} .

Dawar & Otto 2009

van Benthem 1976

The bisimulation-invariant fragment of first-order logic is equivalent to \mathcal{L}_{\Box} .

This holds relative to any elementary class of frames (e.g. transitive) And relative to the class of finite frames [Rosen 1997]

Janin & Walukiewicz 1993

The bisimulation-invariant fragment of monadic second-order logic is equivalent to \mathcal{L}^{μ}_{\Box} .

Dawar & Otto 2009

van Benthem 1976

The bisimulation-invariant fragment of first-order logic is equivalent to \mathcal{L}_{\Box} .

This holds relative to any elementary class of frames (e.g. transitive) And relative to the class of finite frames [Rosen 1997]

Janin & Walukiewicz 1993

The bisimulation-invariant fragment of monadic second-order logic is equivalent to \mathcal{L}^{μ}_{\Box} .

Dawar & Otto 2009

Fernández-Duque 2011

- coined the name "tangle".
- axiomatised the $\mathcal{L}_{\Box}^{\langle t \rangle}$ -logic of the class of all (finite) S4-frames, as S4 +

Fix:
$$\langle t \rangle \Gamma \to \Diamond (\gamma \land \langle t \rangle \Gamma)$$
, all $\gamma \in \Gamma$.

$$\mathsf{Ind:} \ \Box(\varphi \to \bigwedge_{\gamma \in \Gamma} \Diamond(\gamma \land \varphi)) \to (\varphi \to \langle t \rangle \Gamma).$$

 provided its topological interpretation, with closure in place of R⁻¹.

The derivative modality language $\mathcal{L}_{[d]}$

Replace \Box and \diamond by [d] and $\langle d \rangle$, with $[\![\langle d \rangle \varphi]\!] = R^{-1}[\![\varphi]\!]$ Define $\Box \varphi$ as $\varphi \land [d] \varphi$, and $\diamond \varphi = \varphi \lor \langle d \rangle \varphi$.

In a topological space X, the derivative of a subset S is

deriv $S = \{x \in X : x \text{ is a limit point of } S\}.$

 $x \in \operatorname{deriv} S$ iff every neighbourhood O of x has $(O \setminus \{x\}) \cap S \neq \emptyset$.

In a model on X, $[\![\langle d \rangle \varphi]\!] = \operatorname{deriv}[\![\varphi]\!]$, so

 $x \models \langle d \rangle \varphi$ iff every punctured neighbourhood of x intersects $\llbracket \varphi \rrbracket$,

 $x \models [d]\varphi$ iff some punctured neighbourhood of x is included in $\llbracket \varphi \rrbracket$.

The derivative modality language $\mathcal{L}_{[d]}$

Replace \Box and \diamond by [d] and $\langle d \rangle$, with $[\![\langle d \rangle \varphi]\!] = R^{-1}[\![\varphi]\!]$ Define $\Box \varphi$ as $\varphi \land [d] \varphi$, and $\diamond \varphi = \varphi \lor \langle d \rangle \varphi$.

In a topological space X, the derivative of a subset S is

deriv $S = \{x \in X : x \text{ is a limit point of } S\}.$

 $x \in \operatorname{deriv} S$ iff every neighbourhood O of x has $(O \setminus \{x\}) \cap S \neq \emptyset$.

In a model on X, $[\![\langle d \rangle \varphi]\!] = \operatorname{deriv}[\![\varphi]\!]$, so

 $x \models \langle d \rangle \varphi$ iff every punctured neighbourhood of x intersects $\llbracket \varphi \rrbracket$,

 $x \models [d]\varphi$ iff some punctured neighbourhood of x is included in $\llbracket \varphi \rrbracket$.

The derivative modality language $\mathcal{L}_{[d]}$

Replace \Box and \diamond by [d] and $\langle d \rangle$, with $[\![\langle d \rangle \varphi]\!] = R^{-1}[\![\varphi]\!]$ Define $\Box \varphi$ as $\varphi \land [d] \varphi$, and $\diamond \varphi = \varphi \lor \langle d \rangle \varphi$.

In a topological space X, the derivative of a subset S is

deriv $S = \{x \in X : x \text{ is a limit point of } S\}.$

 $x \in \operatorname{deriv} S$ iff every neighbourhood O of x has $(O \setminus \{x\}) \cap S \neq \emptyset$.

In a model on X, $[\![\langle d \rangle \varphi]\!] = \operatorname{deriv}[\![\varphi]\!]$, so

 $x \models \langle d \rangle \varphi$ iff every punctured neighbourhood of x intersects $\llbracket \varphi \rrbracket$,

 $x \models [d]\varphi$ iff some punctured neighbourhood of x is included in $\llbracket \varphi \rrbracket$.

$\mathcal{L}_{[d]}$ is more expressive than \mathcal{L}_{\Box}

- $\llbracket \Box \varphi \rrbracket$ = the interior of $\llbracket \varphi \rrbracket$. $\llbracket \Diamond \varphi \rrbracket$ = the closure of $\llbracket \varphi \rrbracket$.
- Validity of the *R*-transitivity axiom

$$4: \quad \langle d \rangle \langle d \rangle \varphi \to \langle d \rangle \varphi$$

holds iff X is a T_D space, meaning deriv $\{x\}$ is always closed. [*Aull & Thron* 1962]

Validity of the axiom

D: $\langle d \rangle \top$

holds iff X is dense-in-itself, i.e. no isolated points.

Validity of D in a frame holds iff R is total: $\forall x \exists y(xRy)$.

$\mathcal{L}_{[d]}$ is more expressive than \mathcal{L}_{\Box}

- $\llbracket \Box \varphi \rrbracket$ = the interior of $\llbracket \varphi \rrbracket$. $\llbracket \Diamond \varphi \rrbracket$ = the closure of $\llbracket \varphi \rrbracket$.
- Validity of the *R*-transitivity axiom

$$4: \quad \langle d \rangle \langle d \rangle \varphi \to \langle d \rangle \varphi$$

holds iff X is a T_D space, meaning deriv $\{x\}$ is always closed. [*Aull & Thron* 1962]

Validity of the axiom

 $D: \langle d \rangle \top$

holds iff X is dense-in-itself, i.e. no isolated points.

Validity of D in a frame holds iff R is total: $\forall x \exists y(xRy)$.

$\mathcal{L}_{[d]}$ is more expressive than \mathcal{L}_{\Box}

- $\llbracket \Box \varphi \rrbracket$ = the interior of $\llbracket \varphi \rrbracket$. $\llbracket \Diamond \varphi \rrbracket$ = the closure of $\llbracket \varphi \rrbracket$.
- Validity of the *R*-transitivity axiom

$$4: \quad \langle d \rangle \langle d \rangle \varphi \to \langle d \rangle \varphi$$

holds iff X is a T_D space, meaning deriv $\{x\}$ is always closed. [*Aull & Thron* 1962]

Validity of the axiom

 $D: \langle d \rangle \top$

holds iff X is dense-in-itself, i.e. no isolated points.

Validity of D in a frame holds iff R is total: $\forall x \exists y(xRy)$.

Shehtman 1990:

Derived sets in Euclidean spaces and modal logic. Proved

- the L_[d]-logic of every zero-dimensional separable dense-in-itself metric space is KD4.
- the $\mathcal{L}_{[d]}$ -logic of the Euclidean space \mathbb{R}^n for any $n \geq 2$ is

$$\mathsf{KD4} + \mathsf{G}_1 : \langle d \rangle p \land \langle d \rangle \neg p \to \langle d \rangle (\Diamond p \land \Diamond \neg p)$$

Conjectured

• the $\mathcal{L}_{[d]}$ -logic of the real line \mathbb{R} is KD4 + G₂, where G_n is

$$\bigwedge_{i \leq n} \langle d \rangle Q_i \to \langle d \rangle \big(\bigwedge_{i \leq n} \Diamond \neg Q_i \big), \qquad \text{with } Q_i = p_i \land \bigwedge_{i \neq j \leq n} \neg p_j.$$

[Proven later by Shehtman, and by Lucero-Bryan] Asked

Is KD4G₁ the largest logic of any dense-in-itself metric space?

Shehtman 1990:

Derived sets in Euclidean spaces and modal logic. Proved

- the L_[d]-logic of every zero-dimensional separable dense-in-itself metric space is KD4.
- the $\mathcal{L}_{[d]}$ -logic of the Euclidean space \mathbb{R}^n for any $n \geq 2$ is

$$\mathsf{KD4} + \mathsf{G}_1 : \langle d \rangle p \land \langle d \rangle \neg p \to \langle d \rangle (\Diamond p \land \Diamond \neg p)$$

Conjectured

• the $\mathcal{L}_{[d]}$ -logic of the real line \mathbb{R} is KD4 + G₂, where G_n is

$$\bigwedge_{i \leq n} \langle d \rangle Q_i \to \langle d \rangle \big(\bigwedge_{i \leq n} \Diamond \neg Q_i\big), \qquad \text{with } Q_i = p_i \wedge \bigwedge_{i \neq j \leq n} \neg p_j.$$

[Proven later by Shehtman, and by Lucero-Bryan] Asked

Is KD4G₁ the largest logic of any dense-in-itself metric space?

LC2016 Leeds

Shehtman 1990:

Derived sets in Euclidean spaces and modal logic. Proved

- the L_[d]-logic of every zero-dimensional separable dense-in-itself metric space is KD4.
- the $\mathcal{L}_{[d]}$ -logic of the Euclidean space \mathbb{R}^n for any $n \geq 2$ is

$$\mathsf{KD4} + \mathsf{G}_1 : \langle d \rangle p \land \langle d \rangle \neg p \to \langle d \rangle (\Diamond p \land \Diamond \neg p)$$

Conjectured

• the $\mathcal{L}_{[d]}$ -logic of the real line \mathbb{R} is KD4 + G₂, where G_n is

$$\bigwedge_{i \leq n} \langle d \rangle Q_i \to \langle d \rangle \big(\bigwedge_{i \leq n} \Diamond \neg Q_i\big), \qquad \text{with } Q_i = p_i \land \bigwedge_{i \neq j \leq n} \neg p_j.$$

[Proven later by Shehtman, and by Lucero-Bryan] Asked

Is KD4G₁ the largest logic of any dense-in-itself metric space?

LC2016 Leeds

The tangled derivative language $\mathcal{L}_{\Box}^{\langle dt \rangle}$

Replace $\langle t \rangle$ by $\langle dt \rangle$. Interpret $\langle dt \rangle$ by replacing R^{-1} by deriv:

In a model on space X,

$$\begin{split} \llbracket \langle dt \rangle \Gamma \rrbracket &= \text{the tangled derivative of } \{\llbracket \gamma \rrbracket : \gamma \in \Gamma \}. \\ &= \bigcup \{ S \subseteq X : S \subseteq \bigcap_{\gamma \in \Gamma} \operatorname{deriv}(\llbracket \gamma \rrbracket \cap S) \}. \end{split}$$

Whereas,

$$\begin{split} \llbracket \langle t \rangle \Gamma \rrbracket &= \text{the tangled closure of } \{\llbracket \gamma \rrbracket : \gamma \in \Gamma \}. \\ &= \bigcup \{ S \subseteq X : S \subseteq \bigcap_{\gamma \in \Gamma} \text{closure}(\llbracket \gamma \rrbracket \cap S) \}. \end{split}$$

The tangled derivative language $\mathcal{L}_{\Box}^{\langle dt \rangle}$

Replace $\langle t \rangle$ by $\langle dt \rangle$. Interpret $\langle dt \rangle$ by replacing R^{-1} by deriv:

In a model on space X,

$$\begin{split} \llbracket \langle dt \rangle \Gamma \rrbracket &= \text{the tangled derivative of } \{\llbracket \gamma \rrbracket : \gamma \in \Gamma \}. \\ &= \bigcup \{ S \subseteq X : S \subseteq \bigcap_{\gamma \in \Gamma} \frac{\operatorname{deriv}(\llbracket \gamma \rrbracket \cap S) \}. \end{split}$$

Whereas,

$$\begin{split} \llbracket \langle t \rangle \Gamma \rrbracket &= \text{the tangled closure of } \{\llbracket \gamma \rrbracket : \gamma \in \Gamma \}. \\ &= \bigcup \{ S \subseteq X : S \subseteq \bigcap_{\gamma \in \Gamma} \text{closure}(\llbracket \gamma \rrbracket \cap S) \}. \end{split}$$

Defining $\langle t \rangle$ from $\langle dt \rangle$

In a topological space X, $\langle t \rangle \Gamma$ is equivalent to

 $(\bigwedge \Gamma) \vee \langle d \rangle (\bigwedge \Gamma) \vee \langle dt \rangle \Gamma$

if, and only if X is a T_D space.

Axioms for logics: Let L be any logic in some language.

- Lt is the extension of L by the tangle axioms Fix: $\langle dt \rangle \Gamma \rightarrow \langle d \rangle (\gamma \land \langle dt \rangle \Gamma)$ Ind: $\Box(\varphi \rightarrow \bigwedge_{\gamma \in \Gamma} \langle d \rangle (\gamma \land \varphi)) \rightarrow (\varphi \rightarrow \langle dt \rangle \Gamma)$
- L.U is the extension of L that has the universal modality ∀ with semantics

$$x \models \forall \varphi \text{ iff for all } y \in W, y \models \varphi,$$

the S5 axioms and rules for \forall , and the axiom $\forall \varphi \rightarrow [d] \varphi$.

L.UC is the extension of L.U for which C is the axiom

 $\forall (\Box \varphi \lor \Box \neg \varphi) \to (\forall \varphi \lor \forall \neg \varphi),$

expressing topological connectedness.

Axioms for logics:

Let L be any logic in some language.

• Lt is the extension of L by the tangle axioms Fix: $\langle dt \rangle \Gamma \rightarrow \langle d \rangle (\gamma \land \langle dt \rangle \Gamma)$

Ind:
$$\Box(\varphi \to \bigwedge_{\gamma \in \Gamma} \langle d \rangle(\gamma \land \varphi)) \to (\varphi \to \langle dt \rangle \Gamma).$$

 L.U is the extension of L that has the universal modality ∀ with semantics

$$x \models \forall \varphi \text{ iff for all } y \in W, y \models \varphi,$$

the S5 axioms and rules for \forall , and the axiom $\forall \varphi \rightarrow [d] \varphi$.

L.UC is the extension of L.U for which C is the axiom

 $\forall (\Box \varphi \lor \Box \neg \varphi) \to (\forall \varphi \lor \forall \neg \varphi),$

expressing topological connectedness.

Axioms for logics:

Let L be any logic in some language.

• Lt is the extension of L by the tangle axioms Fix: $/dt \Gamma \rightarrow /dt \Gamma$

Ind:
$$\Box(\varphi \to \bigwedge_{\gamma \in \Gamma} \langle d \rangle (\gamma \land \varphi)) \to (\varphi \to \langle dt \rangle \Gamma).$$

 L.U is the extension of L that has the universal modality ∀ with semantics

$$x \models \forall \varphi \text{ iff for all } y \in W, y \models \varphi,$$

the S5 axioms and rules for \forall , and the axiom $\forall \varphi \rightarrow [d] \varphi$.

• L.UC is the extension of L.U for which C is the axiom $\forall (\Box \varphi \lor \Box \neg \varphi) \rightarrow (\forall \varphi \lor \forall \neg \varphi),$

expressing topological connectedness.

Axioms for logics:

Let L be any logic in some language.

• Lt is the extension of L by the tangle axioms Fix: $\langle dt \rangle \Gamma \rightarrow \langle d \rangle (\gamma \wedge \langle dt \rangle \Gamma)$

$$\text{Ind:} \quad \Box(\varphi \to \bigwedge_{\gamma \in \Gamma} \langle d \rangle (\gamma \land \varphi)) \to (\varphi \to \langle dt \rangle \Gamma).$$

 L.U is the extension of L that has the universal modality ∀ with semantics

$$x \models \forall \varphi \text{ iff for all } y \in W, y \models \varphi,$$

the S5 axioms and rules for \forall , and the axiom $\forall \varphi \rightarrow [d] \varphi$.

• L.UC is the extension of L.U for which C is the axiom

$$\forall (\Box \varphi \lor \Box \neg \varphi) \to (\forall \varphi \lor \forall \neg \varphi),$$

expressing topological connectedness.

LC2016 Leeds

Let X be any dense-in-itself metric space

language	logic complete over X	sound over X
$\mathcal{L}^{\langle t angle}_{\Box}$	S4t	yes
$\mathcal{L}_{\Box orall}$	S4.UC	if X connected
$\mathcal{L}_{\Box orall}^{\langle t angle}$	S4t.UC	if X connected
$\mathcal{L}_{[d]}$	$KD4G_1$ ¹	if G_1 valid in X
$\mathcal{L}_{[d]}^{\langle dt angle} \ \mathcal{L}_{[d] orall}$	$KD4G_1t$	if G_1 valid in X
$\mathcal{L}_{[d] orall}$	$KD4G_1.UC$	if X connected & validates G_1
${\cal L}_{[d]orall}^{\langle dt angle}$	$KD4G_1t.UC$	if X connected & validates G_1

¹answers Shehtman's question

The Case of \mathbb{R} :

- The $\mathcal{L}_{[d]}^{\langle dt \rangle}$ -logic of \mathbb{R} is KD4G₂t.
- The $\mathcal{L}^{\langle dt \rangle}_{[d] \forall}$ -logic of \mathbb{R} is KD4G₂t.UC.

The Zero-Dimensional case:

Let X be any zero-dimensional dense-in-itself metric space.

- The $\mathcal{L}_{[d]}$ -logic of X is KD4.
- The $\mathcal{L}_{[d]}^{\langle dt \rangle}$ -logic of X is KD4t.
- The $\mathcal{L}_{[d]\forall}^{\langle dt \rangle}$ -logic of X is KD4t.U.

The Case of \mathbb{R} :

- The $\mathcal{L}_{[d]}^{\langle dt \rangle}$ -logic of \mathbb{R} is KD4G₂t.
- The $\mathcal{L}_{[d]\forall}^{\langle dt \rangle}$ -logic of \mathbb{R} is KD4G₂t.UC.

The Zero-Dimensional case:

Let X be any zero-dimensional dense-in-itself metric space.

- The $\mathcal{L}_{[d]}$ -logic of X is KD4.
- The $\mathcal{L}_{[d]}^{\langle dt \rangle}$ -logic of X is KD4t.

• The
$$\mathcal{L}_{[d]\forall}^{\langle dt \rangle}$$
-logic of X is KD4 t .U.

- Let L be KD4G₁ or KD4G₁t or S4t. Then any countable L-consistent set of formulas is satisfiable in any dense-in-itself metric space.
- Any countable KD4*t*-consistent set of formulas is satisfiable in any zero-dimensional dense-in-itself metric space.

Can fail for frame and spatial semantics for "large enough" sets:

$$\{\Diamond p_i : i < \kappa\} \cup \{\neg \Diamond (p_i \land p_j) : i < j < \kappa\}$$

Not satisfiable in frame \mathcal{F} if $\kappa > \operatorname{card} \mathcal{F}$.

- Let L be KD4G₁ or KD4G₁t or S4t. Then any countable L-consistent set of formulas is satisfiable in any dense-in-itself metric space.
- Any countable KD4*t*-consistent set of formulas is satisfiable in any zero-dimensional dense-in-itself metric space.

Can fail for frame and spatial semantics for "large enough" sets:

$$\{\Diamond p_i : i < \kappa\} \cup \{\neg \Diamond (p_i \land p_j) : i < j < \kappa\}$$

Not satisfiable in frame \mathcal{F} if $\kappa > \operatorname{card} \mathcal{F}$.

- Let L be KD4G₁ or KD4G₁t or S4t. Then any countable L-consistent set of formulas is satisfiable in any dense-in-itself metric space.
- Any countable KD4*t*-consistent set of formulas is satisfiable in any zero-dimensional dense-in-itself metric space.

Can fail for frame and spatial semantics for "large enough" sets:

$$\{\Diamond p_i : i < \kappa\} \cup \{\neg \Diamond (p_i \land p_j) : i < j < \kappa\}$$

Not satisfiable in frame \mathcal{F} if $\kappa > \operatorname{card} \mathcal{F}$.

- Let L be KD4G₁ or KD4G₁t or S4t. Then any countable L-consistent set of formulas is satisfiable in any dense-in-itself metric space.
- Any countable KD4*t*-consistent set of formulas is satisfiable in any zero-dimensional dense-in-itself metric space.

Can fail for frame and spatial semantics for "large enough" sets:

$$\{\Diamond p_i : i < \kappa\} \cup \{\neg \Diamond (p_i \land p_j) : i < j < \kappa\}$$

Not satisfiable in frame \mathcal{F} if $\kappa > \operatorname{card} \mathcal{F}$.

Strong completeness can fail for Kripke semantics for countable Γ :

$$\Sigma = \{ \diamondsuit p_0 \} \cup \\ \{ \Box(p_{2n} \to \diamondsuit(p_{2n+1} \land q)), \Box(p_{2n+1} \to \diamondsuit(p_{2n+2} \land \neg q)) : n < \omega \}$$

 $\Sigma \cup \{\neg \langle t \rangle \{q, \neg q\}\}$ is finitely satisfiable, so is K4*t*-consistent, but is not satisfiable in any Kripke model.

Also shows that in the canonical model for K4t, the 'Truth Lemma' fails.

Strong completeness can fail for Kripke semantics for countable Γ :

$$\Sigma = \{ \diamondsuit p_0 \} \cup \\ \{ \Box(p_{2n} \to \diamondsuit(p_{2n+1} \land q)), \Box(p_{2n+1} \to \diamondsuit(p_{2n+2} \land \neg q)) : n < \omega \}$$

 $\Sigma \cup \{\neg \langle t \rangle \{q, \neg q\}\}$ is finitely satisfiable, so is K4*t*-consistent, but is not satisfiable in any Kripke model.

Also shows that in the canonical model for K4t, the 'Truth Lemma' fails.

Proving a logic L is complete over space X:

Prove the finite model property for L over Kripke frames:
 if L μ φ, then φ is falsifiable in some suitable finite frame F |=L.

2 Construct a surjective d-morphism $f: X \twoheadrightarrow \mathcal{F}$:

$$f^{-1}(R^{-1}(S)) = \operatorname{deriv} f^{-1}(S).$$

Such an *f* preserves validity of formulas from *X* to \mathcal{F} , so $X \not\models \varphi$.

Modified Tarski Dissection Theorem

Let X be a dense-in-itself metric space. Then X is dissectable as follows:

Let \mathbb{G} be a non-empty open subset of X, and let $r, s < \omega$.

Then $\ensuremath{\mathbb{G}}$ can be partitioned into non-empty subsets

 $\mathbb{G}_1,\ldots,\mathbb{G}_r,\mathbb{B}_0,\ldots,\mathbb{B}_s$

such that the \mathbb{G}_i 's are all open and

 $\operatorname{cl}(\mathbb{G}_i) \setminus \mathbb{G}_i = \operatorname{deriv}(\mathbb{B}_j) = \operatorname{cl}(\mathbb{G}) \setminus (\mathbb{G}_1 \cup \cdots \cup \mathbb{G}_r).$

This encodes a d-morphism $\mathbb{G} \twoheadrightarrow \mathcal{F}$, if \mathcal{F} is a point-generated S4-frame.

Further dissections of a dense-in-itself metric *X*

• Let \mathbb{G} be a non-empty open subset of X, and let $k < \omega$. Then there are pairwise disjoint non-empty subsets $\mathbb{I}_0, \ldots, \mathbb{I}_k \subseteq \mathbb{G}$ satisfying

```
deriv \mathbb{I}_i = \operatorname{cl}(\mathbb{G}) \setminus \mathbb{G} for each i \leq k.
```

Let X be zero-dimensional.

If \mathbb{G} is a non-empty open subset of *X*, and $n < \omega$, then \mathbb{G} can be partitioned into non-empty open subsets $\mathbb{G}_0, \ldots, \mathbb{G}_n$ such that

 $\operatorname{cl}(\mathbb{G}_i) \setminus \mathbb{G}_i = \operatorname{cl}(\mathbb{G}) \setminus \mathbb{G}$ for each $i \leq n$.