Spatial Logic of Tangled Closure and Derivative Operators

Rob Goldblatt

Victoria University of Wellington

Logic Colloquium 2016
University of Leeds, 31 July - 6 August

Joint work with Ian Hodkinson

Papers:

- Spatial logic of modal mu-calculus and tangled closure operators. arXiv
- The tangled derivative logic of the real line and zero-dimensional spaces. Advances in Modal Logic, vol. 11. www. aiml. net

What is Spatial Logic?

By a spatial logic, we understand any formal language interpreted over a class of structures featuring geometrical entities and relations, broadly construed.

Basic modal language \mathcal{L}_{\square}

- a set of propositional variables/atoms p, q, \ldots
- Boolean connectives:

$$
\neg \varphi \quad \varphi \wedge \psi \quad \varphi \vee \psi \quad \varphi \rightarrow \psi \quad \varphi \leftrightarrow \psi
$$

- box modality
- diamond modality $\diamond \varphi$ is $\neg \square \neg \varphi$

Kripke Semantics for \mathcal{L}_{\square}

Kripke frame: a directed graph $\mathcal{F}=(W, R)$ with $R \subseteq W \times W$. Successor set: $R(x)=\{y: x R y\}$

A model on \mathcal{F} : assigns to each formula φ a truth set $[\varphi \rrbracket \subseteq W$. Truth at a point: $\quad x \models \varphi$ means $x \in \llbracket \varphi \rrbracket$.

Semantic conditions:

Kripke Semantics for \mathcal{L}_{\square}

Kripke frame: a directed graph $\mathcal{F}=(W, R)$ with $R \subseteq W \times W$.
Successor set: $R(x)=\{y: x R y\}$
A model on \mathcal{F} : assigns to each formula φ a truth set $\llbracket \varphi \rrbracket \subseteq W$.
Truth at a point:

$$
x \models \varphi \text { means } x \in \llbracket \varphi \rrbracket .
$$

Semantic conditions:

Kripke Semantics for \mathcal{L}_{\square}

Kripke frame: a directed graph $\mathcal{F}=(W, R)$ with $R \subseteq W \times W$.
Successor set: $R(x)=\{y: x R y\}$
A model on \mathcal{F} : assigns to each formula φ a truth set $\llbracket \varphi \rrbracket \subseteq W$.
Truth at a point: $\quad x \models \varphi$ means $x \in \llbracket \varphi \rrbracket$.
Semantic conditions:

$$
\begin{gathered}
\llbracket \neg \varphi \rrbracket=W \backslash \llbracket \varphi \rrbracket \\
\llbracket \varphi \wedge \psi \rrbracket=\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket, \\
x \models \square \varphi \text { iff } R(x) \subseteq \llbracket \varphi \rrbracket \\
x \models \diamond \varphi \text { iff } R(x) \cap \llbracket \varphi \rrbracket \neq \emptyset .
\end{gathered}
$$

Kripke Semantics for \mathcal{L}_{\square}

Kripke frame: a directed graph $\mathcal{F}=(W, R)$ with $R \subseteq W \times W$.
Successor set: $R(x)=\{y: x R y\}$
A model on \mathcal{F} : assigns to each formula φ a truth set $\llbracket \varphi \rrbracket \subseteq W$.
Truth at a point: $\quad x \models \varphi$ means $x \in \llbracket \varphi \rrbracket$.
Semantic conditions:

$$
\begin{aligned}
& \llbracket \neg \varphi \rrbracket=W \backslash \llbracket \varphi \rrbracket \\
& \llbracket \varphi \wedge \psi \rrbracket=\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket, \\
& x \vDash \square \varphi \text { iff } R(x) \subseteq \llbracket \varphi \rrbracket \\
& x \models \diamond \varphi \text { iff } R(x) \cap \llbracket \varphi \rrbracket \neq \emptyset . \\
& \therefore \llbracket \diamond \varphi \rrbracket=R^{-1} \llbracket \varphi \rrbracket \quad!!!!
\end{aligned}
$$

Truth of φ in a model: means that $\llbracket \varphi \rrbracket=W$. This is first-order definable in the structure

$$
(W, R,\{\llbracket p \rrbracket: p \text { is an atom }\})
$$

by the sentence $\forall x \varphi^{*}(x)$, where

$$
\begin{aligned}
& (\square \varphi)^{*}(x) \text { is } \forall y\left(x R y \rightarrow \varphi^{*}(y)\right) \\
& (\Delta \varphi)^{*}(x) \text { is } \exists y\left(x R y \wedge \varphi^{*}(y)\right)
\end{aligned}
$$

Validity of φ in frame \mathcal{F} :

- Means that φ is true in every model on \mathcal{F}.
i.e. φ is true at every point in every model on \mathcal{F}.
- This is monadic-second-order definable in \mathcal{F} by $\forall p_{1} \cdots \forall p_{n} \forall x \varphi^{*}(x)$

Truth of φ in a model: means that $\llbracket \varphi \rrbracket=W$. This is first-order definable in the structure

$$
(W, R,\{\llbracket p \rrbracket: p \text { is an atom }\})
$$

by the sentence $\forall x \varphi^{*}(x)$, where

$$
\begin{aligned}
& (\square \varphi)^{*}(x) \text { is } \forall y\left(x R y \rightarrow \varphi^{*}(y)\right) \\
& (\diamond \varphi)^{*}(x) \text { is } \exists y\left(x R y \wedge \varphi^{*}(y)\right)
\end{aligned}
$$

Validity of φ in frame \mathcal{F} :

- Means that φ is true in every model on \mathcal{F}.
i.e. φ is true at every point in every model on \mathcal{F}.
- This is monadic-second-order definable in \mathcal{F} by $\forall p_{1}$

Truth of φ in a model: means that $\llbracket \varphi \rrbracket=W$. This is first-order definable in the structure

$$
(W, R,\{\llbracket p \rrbracket: p \text { is an atom }\})
$$

by the sentence $\forall x \varphi^{*}(x)$, where

$$
\begin{aligned}
& (\square \varphi)^{*}(x) \text { is } \forall y\left(x R y \rightarrow \varphi^{*}(y)\right) \\
& (\diamond \varphi)^{*}(x) \text { is } \exists y\left(x R y \wedge \varphi^{*}(y)\right)
\end{aligned}
$$

Validity of φ in frame \mathcal{F} :

- Means that φ is true in every model on \mathcal{F}.
i.e. φ is true at every point in every model on \mathcal{F}.
- This is monadic-second-order definable in \mathcal{F} by $\forall p_{1} \cdots \forall p_{n} \forall x \varphi^{*}(x)$

Topological semantics for \mathcal{L}_{\square}

Let X be a topological space.
A model on X assigns to each formula φ a truth set $\llbracket \varphi \rrbracket \subseteq X$, with

$$
\begin{aligned}
\llbracket \neg \varphi \rrbracket & =X \backslash \llbracket \varphi \rrbracket \\
\llbracket \varphi \wedge \psi \rrbracket & =\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket, \\
\llbracket \square \varphi \rrbracket & =\operatorname{int} \llbracket \varphi \rrbracket, \quad \text { the interior of } \llbracket \varphi \rrbracket \\
\therefore \llbracket \diamond \varphi \rrbracket & =\operatorname{cl} \llbracket \varphi \rrbracket, \quad \text { the closure of } \llbracket \varphi \rrbracket
\end{aligned}
$$

$x \models \square \varphi$ iff there is an open set O with $x \in O \subseteq \llbracket \varphi \rrbracket$. $x=\Delta \varphi$ iff every open neighbourhood of x intersects $[\varphi]$.

Topological semantics for \mathcal{L}_{\square}

Let X be a topological space.
A model on X assigns to each formula φ a truth set $\llbracket \varphi \rrbracket \subseteq X$, with

$$
\begin{aligned}
\llbracket \neg \varphi \rrbracket & =X \backslash \llbracket \varphi \rrbracket \\
\llbracket \varphi \wedge \psi \rrbracket & =\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket, \\
\llbracket \square \varphi \rrbracket & =\operatorname{int} \llbracket \varphi \rrbracket, \text { the interior of } \llbracket \varphi \rrbracket \\
\therefore \llbracket \diamond \varphi \rrbracket & =\operatorname{cl} \llbracket \varphi \rrbracket, \text { the closure of } \llbracket \varphi \rrbracket
\end{aligned}
$$

$x \models \square \varphi$ iff there is an open set O with $x \in O \subseteq \llbracket \varphi \rrbracket$.
$x \models \diamond \varphi$ iff every open neighbourhood of x intersects $\llbracket \varphi \rrbracket$.

Logic of a space $X:=\{\varphi: \varphi$ is valid in $X\}$

- The logic of any space includes S4.
- The logic of any separable dense-in-itself metric space is exactly S4. This includes the Euclidean spaces \mathbb{R}^{n} for all $n \geq 1$, the rationals \mathbb{Q}, Cantor space, Baire space,...
- Due to McKinsey \& Tarski 1948: Some Theorems About the Sentential Calculi of Lewis and Heyting.
- Separability constraint removed by Rasiowa \& Sikorski 1963.

Logic of a space $X:=\{\varphi: \varphi$ is valid in $X\}$

- The logic of any space includes S4.
- The logic of any separable dense-in-itself metric space is exactly S4. This includes the Euclidean spaces \mathbb{R}^{n} for all $n \geq 1$, the rationals \mathbb{Q}, Cantor space, Baire space,...
- Due to McKinsey \& Tarski 1948: Some Theorems About the Sentential Calculi of Lewis and Heyting.
, Separability constraint removed by Rasiowa \& Sikorski 1963.

Logic of a space $X:=\{\varphi: \varphi$ is valid in $X\}$

- The logic of any space includes S4.
- The logic of any separable dense-in-itself metric space is exactly S4. This includes the Euclidean spaces \mathbb{R}^{n} for all $n \geq 1$, the rationals \mathbb{Q}, Cantor space, Baire space,...
- Due to McKinsey \& Tarski 1948: Some Theorems About the Sentential Calculi of Lewis and Heyting.
- Separability constraint removed by Rasiowa \& Sikorski 1963.

Logic of a space $X:=\{\varphi: \varphi$ is valid in $X\}$

- The logic of any space includes S4.
- The logic of any separable dense-in-itself metric space is exactly S4. This includes the Euclidean spaces \mathbb{R}^{n} for all $n \geq 1$, the rationals \mathbb{Q}, Cantor space, Baire space,...
- Due to McKinsey \& Tarski 1948: Some Theorems About the Sentential Calculi of Lewis and Heyting.
- Separability constraint removed by Rasiowa \& Sikorski 1963.

Logic of a space $X:=\{\varphi: \varphi$ is valid in $X\}$

- The logic of any space includes S4.
- The logic of any separable dense-in-itself metric space is exactly S4. This includes the Euclidean spaces \mathbb{R}^{n} for all $n \geq 1$, the rationals \mathbb{Q}, Cantor space, Baire space,...
- Due to McKinsey \& Tarski 1948: Some Theorems About the Sentential Calculi of Lewis and Heyting.
- Separability constraint removed by Rasiowa \& Sikorski 1963.

C.I. Lewis 1932

$\varphi \rightarrow \psi$ defined as $\neg \diamond(\varphi \wedge \neg \psi)$
S4 defined as $\mathrm{S} 1+\diamond \diamond \varphi \rightarrow \diamond \varphi$

S1 AXIOMS
$(\varphi \wedge \psi) \rightrightarrows(\psi \wedge \varphi)$
$(\varphi \wedge \psi) \rightrightarrows \varphi$
$\varphi \rightharpoondown(\varphi \wedge \varphi)$
$((\varphi \wedge \psi) \wedge \chi)-3(\varphi \wedge(\psi \wedge \chi))$
$\varphi \rightarrow \neg \neg \varphi$
$((\varphi \multimap \psi) \wedge(\psi \dashv \chi)) \dashv(\varphi$ ъ $)$
$(\varphi \wedge(\varphi \rightharpoondown \psi)) \rightharpoondown \psi$

RULES

uniform substitution for atoms
$\frac{\varphi, \psi}{\varphi \wedge \psi}$
$\frac{\varphi, \varphi-\psi}{\psi}$
$\frac{(\varphi-3 \psi) \wedge(\psi-3 \varphi), \chi}{\chi(\psi / \varphi)}$

Standard definition of S4

To a suitable basis for non-modal propositional calculus add the axioms

$$
\begin{aligned}
& \square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi) \\
& \square \varphi \rightarrow \varphi \\
& \square \varphi \rightarrow \square \square \varphi
\end{aligned}
$$

and rule $\quad \frac{\varphi}{\square \varphi}$

This is due to Gödel 1933

with $\square \varphi$ written as $B \varphi$ " φ is provable".

Equivalent to Lewis' system with Becker's additional axiom

Standard definition of S4

To a suitable basis for non-modal propositional calculus add the axioms

$$
\begin{aligned}
& \square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi) \\
& \square \varphi \rightarrow \varphi \\
& \square \varphi \rightarrow \square \square \varphi
\end{aligned}
$$

and rule $\quad \frac{\varphi}{\square \varphi}$

This is due to Gödel 1933
with $\square \varphi$ written as $B \varphi$ " φ is provable".
Equivalent to Lewis' system with Becker's additional axiom

Frames for S4:

$$
\begin{aligned}
\mathcal{F}= & (W, R) \text { validates } \mathrm{S} 4 \text { iff } R \text { is reflexive and transitive (a quasi-order). } \\
& \square \varphi \rightarrow \varphi \quad \text { corresponds to reflexivity. } \\
& \square \varphi \rightarrow \square \square \varphi \text { corresponds to transitivity. }
\end{aligned}
$$

In any S4-frame, the collection

$$
\{R(x): x \in W\}
$$

is a basis for the Alexandroff topology on W, in which

The resulting topological semantics coincides with the Kripke semantics.

Frames for S4:

$\mathcal{F}=(W, R)$ validates S 4 iff R is reflexive and transitive (a quasi-order).
$\square \varphi \rightarrow \varphi \quad$ corresponds to reflexivity.
$\square \varphi \rightarrow \square \square \varphi$ corresponds to transitivity.
In any S4-frame, the collection

$$
\{R(x): x \in W\}
$$

is a basis for the Alexandroff topology on W, in which

$$
\operatorname{cl}(S)=R^{-1}(S)
$$

The resulting topological semantics coincides with the Kripke semantics.

Tarski 1938 : Sentential calculus and topology

- Gave a topological interpretation of connectives that validates intuitionistic logic:

$$
\begin{aligned}
\llbracket p \rrbracket & =\text { any open set } \\
\llbracket \neg \varphi \rrbracket & =\text { interior of } X \backslash \llbracket \varphi \rrbracket \\
\llbracket \varphi \rightarrow \psi \rrbracket & =\text { interior of }(X \backslash \llbracket \varphi \rrbracket) \cup \llbracket \psi \rrbracket .
\end{aligned}
$$

- Showed that the logic of any dissectable space is exactly the intuitionistic calculus.
- Included a proof that any separable dense-in-itself metric space is dissectable.

Tarski 1938 : Sentential calculus and topology

- Gave a topological interpretation of connectives that validates intuitionistic logic:

$$
\begin{aligned}
\llbracket p \rrbracket & =\text { any open set } \\
\llbracket \neg \varphi \rrbracket & =\text { interior of } X \backslash \llbracket \varphi \rrbracket \\
\llbracket \varphi \rightarrow \psi \rrbracket & =\text { interior of }(X \backslash \llbracket \varphi \rrbracket) \cup \llbracket \psi \rrbracket .
\end{aligned}
$$

- Showed that the logic of any dissectable space is exactly the intuitionistic calculus.
- Included a proof that any separable dense-in-itself metric space is dissectable.

Tarski's Original Dissection Theorem:

Let X be a dense-in-itself normal topological space with a countable basis of open sets.

Let \mathbb{G} be a non-empty open subset of X, and let $r<\omega$.
Then \mathbb{G} can be partitioned into non-empty subsets

$$
\mathbb{G}_{1}, \ldots, \mathbb{G}_{r}, \mathbb{B}
$$

such that the \mathbb{G}_{i} 's are all open and

$$
\operatorname{cl}(\mathbb{G}) \backslash \mathbb{G} \subseteq \operatorname{cl} \mathbb{B} \subseteq \operatorname{cl} \mathbb{G}_{1} \cap \ldots \cap \operatorname{cl} \mathbb{G}_{r}
$$

[Proof credited to Samuel Eilenberg]

McKinsey and Tarski

1944 The Algebra of Topology

- Defined a closure algebra as a Boolean algebra with a unary operation $\mathrm{C} x$ having $\quad x \leq \mathrm{C} x=\mathrm{CC} x$

$$
\begin{aligned}
\mathrm{C}(x+y) & =\mathrm{C} x+\mathrm{C} y \\
\mathrm{C} 0 & =0
\end{aligned}
$$

- Showed: if X a dissectable space, any finite closure algebra embeddable into the closure algebra of subsets of some open subset of X.

Works for any dissectable closure algebra in place of (the closure algebra of) X

McKinsey and Tarski

1944 The Algebra of Topology

- Defined a closure algebra as a Boolean algebra with a unary operation $\mathrm{C} x$ having $\quad x \leq \mathrm{C} x=\mathrm{CC} x$

$$
\begin{aligned}
\mathrm{C}(x+y) & =\mathrm{C} x+\mathrm{C} y \\
\mathrm{C} 0 & =0
\end{aligned}
$$

- Showed: if X a dissectable space, any finite closure algebra embeddable into the closure algebra of subsets of some open subset of X.

Works for any dissectable closure algebra in place of (the closure algebra of) X.

The modal mu-calculus language \mathcal{L}^{μ} Allows formation of the least fixed point formula

$$
\mu p . \varphi
$$

when p is positive in φ.
The greatest fixed point formula $\nu p . \varphi$ is

$$
\neg \mu p . \varphi(\neg p / p) .
$$

Semantics in a model on a frame or space:
$\llbracket \mu p . \varphi \rrbracket$ is the least fixed point of the operator $S \mapsto \llbracket \varphi \rrbracket_{p:=S}$

$\llbracket \nu p . \varphi \rrbracket$ is the greatest fixed point:

The modal mu-calculus language $\mathcal{L}_{\square}^{\mu}$ Allows formation of the least fixed point formula

$$
\mu p . \varphi
$$

when p is positive in φ.
The greatest fixed point formula $\nu p . \varphi$ is

$$
\neg \mu p . \varphi(\neg p / p) .
$$

Semantics in a model on a frame or space:
$\llbracket \mu p . \varphi \rrbracket$ is the least fixed point of the operator $S \mapsto \llbracket \varphi \rrbracket_{p:=S}$

$$
\llbracket \mu p . \varphi \rrbracket=\bigcap\left\{S \subseteq W: \llbracket \varphi \rrbracket_{p:=S} \subseteq S\right\}
$$

$\llbracket \nu p . \varphi \rrbracket$ is the greatest fixed point:

$$
\llbracket \nu p . \varphi \rrbracket=\bigcup\left\{S \subseteq W: S \subseteq \llbracket \varphi \rrbracket_{p:=S}\right\}
$$

The tangle modality language $\mathcal{L}_{\square}^{\langle t\rangle}$

Allows formation of the formula

$$
\langle t\rangle \Gamma
$$

when Γ is any finite non-empty set of formulas.
Semantics of $\langle t\rangle$ in a model on a frame:
$x \models\langle t\rangle \Gamma$ iff there is an endless R-path

in W with each member of Γ being true at x_{n} for infinitely many n.

The tangle modality language $\mathcal{L}_{\square}^{\langle t\rangle}$

Allows formation of the formula

$$
\langle t\rangle \Gamma
$$

when Γ is any finite non-empty set of formulas.
Semantics of $\langle t\rangle$ in a model on a frame:
$x \models\langle t\rangle \Gamma$ iff there is an endless R-path

$$
x R x_{1} \cdots x_{n} R x_{n+1} \cdots \cdots
$$

in W with each member of Γ being true at x_{n} for infinitely many n.

Cluster analysis

A transitive frame (W, R) is a partially ordered set of clusters, equivalence classes under the relation

$$
x \equiv y \quad \text { iff } \quad x=y \text { or } x R y R x .
$$

Put $C_{x}=\{y: x \equiv y\}$, and lift R to a partial order of clusters by

$$
C_{x} R C_{y} \quad \text { iff } \quad x R y
$$

If the frame is finite, an endless R-path must eventually enter some non-degenerate cluster and stay there.

$x \models\langle t\rangle \Gamma$ iff there is a y with $x R y$ and $y R y$ and each
member of Γ true at some point of the cluster C_{y}.

Cluster analysis

A transitive frame (W, R) is a partially ordered set of clusters, equivalence classes under the relation

$$
x \equiv y \quad \text { iff } \quad x=y \text { or } x R y R x
$$

Put $C_{x}=\{y: x \equiv y\}$, and lift R to a partial order of clusters by

$$
C_{x} R C_{y} \quad \text { iff } \quad x R y
$$

If the frame is finite, an endless R-path must eventually enter some non-degenerate cluster and stay there.
$x \models\langle t\rangle \Gamma$ iff there is a y with $x R y$ and $y R y$ and each
member of Γ true at some point of the cluster C_{y}.

$\langle t\rangle \Gamma$ is definable in $\mathcal{L}_{\square}^{\mu}$

In any model on a transitive frame,

$$
\llbracket\langle t\rangle \Gamma \rrbracket=\bigcup\left\{S \subseteq W: S \subseteq \bigcap_{\gamma \in \Gamma} R^{-1}(\llbracket \gamma \rrbracket \cap S)\right\}
$$

$$
\text { i.e. } \llbracket\langle t\rangle \Gamma \rrbracket \text { is the largest set } S \text { such that }
$$

$$
\text { for all } \gamma \in \Gamma, \quad S \subseteq R^{-1}(\llbracket \gamma \rrbracket \cap S) \text {. }
$$

But $R^{-1} \llbracket \varphi \rrbracket=\llbracket \diamond \varphi \rrbracket$, and \bigcap interprets \wedge,
so $\langle t\rangle \Gamma$ has the same meaning as the $\mathcal{L}_{\square}^{\mu}$-formula

Suggests a topological semantics: replace R^{-1} by closure
$\langle t\rangle \Gamma$ is definable in $\mathcal{L}_{\square}^{\mu}$
In any model on a transitive frame,

$$
\llbracket\langle t\rangle \Gamma \rrbracket=\bigcup\left\{S \subseteq W: S \subseteq \bigcap_{\gamma \in \Gamma} R^{-1}(\llbracket \gamma \rrbracket \cap S)\right\}
$$

i.e. $\llbracket\langle t\rangle \Gamma \rrbracket$ is the largest set S such that

$$
\text { for all } \gamma \in \Gamma, \quad S \subseteq R^{-1}(\llbracket \gamma \rrbracket \cap S) \text {. }
$$

But $R^{-1} \llbracket \varphi \rrbracket=\llbracket \diamond \varphi \rrbracket$, and \bigcap interprets \wedge,
so $\langle t\rangle \Gamma$ has the same meaning as the $\mathcal{L}_{\square}^{\mu}$-formula

$\langle t\rangle \Gamma$ is definable in $\mathcal{L}_{\square}^{\mu}$
In any model on a transitive frame,

$$
\llbracket\langle t\rangle \Gamma \rrbracket=\bigcup\left\{S \subseteq W: S \subseteq \bigcap_{\gamma \in \Gamma} R^{-1}(\llbracket \gamma \rrbracket \cap S)\right\}
$$

i.e. $\llbracket\langle t\rangle \Gamma \rrbracket$ is the largest set S such that

$$
\text { for all } \gamma \in \Gamma, \quad S \subseteq R^{-1}(\llbracket \gamma \rrbracket \cap S) \text {. }
$$

But $R^{-1} \llbracket \varphi \rrbracket=\llbracket \diamond \varphi \rrbracket$, and \bigcap interprets \wedge,
so $\langle t\rangle \Gamma$ has the same meaning as the $\mathcal{L}_{\square}^{\mu}$-formula

$$
\nu p . \bigwedge_{\gamma \in \Gamma} \diamond(\gamma \wedge p)
$$

Suggests a topological semantics: replace R^{-1} by closure
$\langle t\rangle \Gamma$ is definable in $\mathcal{L}_{\square}^{\mu}$
In any model on a transitive frame,

$$
\llbracket\langle t\rangle \Gamma \rrbracket=\bigcup\left\{S \subseteq W: S \subseteq \bigcap_{\gamma \in \Gamma} R^{-1}(\llbracket \gamma \rrbracket \cap S)\right\}
$$

i.e. $\llbracket\langle t\rangle \Gamma \rrbracket$ is the largest set S such that

$$
\text { for all } \gamma \in \Gamma, \quad S \subseteq R^{-1}(\llbracket \gamma \rrbracket \cap S) \text {. }
$$

But $R^{-1} \llbracket \varphi \rrbracket=\llbracket \diamond \varphi \rrbracket$, and \bigcap interprets \wedge,
so $\langle t\rangle \Gamma$ has the same meaning as the $\mathcal{L}_{\square}^{\mu}$-formula

$$
\nu p . \bigwedge_{\gamma \in \Gamma} \diamond(\gamma \wedge p)
$$

Suggests a topological semantics: replace R^{-1} by closure

Origin of the tangle modality:

van Benthem 1976

The bisimulation-invariant fragment of first-order logic is equivalent to \mathcal{L}_{\square}.

This holds relative to any elementary class of frames (e.g. transitive) And relative to the class of finite frames [Rosen 1997]

Janin \& Walukiowicz 1993
The bisimulation-invariant fragment of monadic second-order logic is equivalent to $\mathcal{L}_{\square}^{\mu}$.

Dawar \& Otto 2009
over the class of finite transitive frames, the bisimulation-invariant fragment of monadic second-order logic collapses to that of first-order logic, with both fragments, and $\mathcal{L}_{\square}^{\mu}$, being equivalent to the tangle extension $\mathcal{L}_{\square}^{\langle t\rangle}$.

Origin of the tangle modality:

van Benthem 1976
The bisimulation-invariant fragment of first-order logic is equivalent to \mathcal{L}_{\square}.

> This holds relative to any elementary class of frames (e.g. transitive) And relative to the class of finite frames [Rosen 1997]

> Janin 8. Walukiemicz 1993
> The bisimulation-invariant fragment of monadic second-order logic is equivalent to $\mathcal{L}_{\square}^{\mu}$.

Dawar \& Otto 2009
over the class of finite transitive frames, the
bisimulation-invariant fragment of monadic second-order
logic collapses to that of first-order logic, with both fragments, and $\mathcal{L}_{\square}^{\mu}$, being equivalent to the tangle extension $\mathcal{L}_{\square}^{\langle t\rangle}$

Origin of the tangle modality:

van Benthem 1976
The bisimulation-invariant fragment of first-order logic is equivalent to \mathcal{L}_{\square}.

This holds relative to any elementary class of frames (e.g. transitive) And relative to the class of finite frames [Rosen 1997]

Janin \& Walukiewicz 1993
The bisimulation-invariant fragment of monadic second-order logic is equivalent to $\mathcal{L}_{\square}^{\mu}$.

Dawar \& Otto 2009
over the class of finite transitive frames, the
bisimulation-invariant fragment of monadic second-order
logic collapses to that of first-order logic, with both fragments, and $\mathcal{L}_{\square}^{\mu}$, being equivalent to the tangle extension $\mathcal{L}_{\square}^{\langle t\rangle}$

Origin of the tangle modality:

van Benthem 1976
The bisimulation-invariant fragment of first-order logic is equivalent to \mathcal{L}_{\square}.

This holds relative to any elementary class of frames (e.g. transitive) And relative to the class of finite frames [Rosen 1997]

Origin of the tangle modality:

van Benthem 1976
The bisimulation-invariant fragment of first-order logic is equivalent to \mathcal{L}_{\square}.

This holds relative to any elementary class of frames (e.g. transitive) And relative to the class of finite frames [Rosen 1997]

Janin \& Walukiewicz 1993
The bisimulation-invariant fragment of monadic second-order logic is equivalent to $\mathcal{L}_{\square}^{\mu}$.

Dawar \& Otto 2009
over the class of finite transitive frames, the
bisimulation-invariant fragment of monadic second-order logic collapses to that of first-order logic, with both fragments, and $\mathcal{L}_{\square}^{\mu}$, being equivalent to the tangle extension $\mathcal{L}_{\square}^{\langle t\rangle}$

Origin of the tangle modality:

van Benthem 1976
The bisimulation-invariant fragment of first-order logic is equivalent to \mathcal{L}_{\square}.

This holds relative to any elementary class of frames (e.g. transitive)
And relative to the class of finite frames [Rosen 1997]
Janin \& Walukiewicz 1993
The bisimulation-invariant fragment of monadic second-order logic is equivalent to $\mathcal{L}_{\square}^{\mu}$.

Dawar \& Otto 2009

over the class of finite transitive frames, the bisimulation-invariant fragment of monadic second-order logic collapses to that of first-order logic, with both fragments, and $\mathcal{L}_{\square}^{\mu}$, being equivalent to the tangle extension $\mathcal{L}_{\square}^{\langle t\rangle}$.

Fernández-Duque 2011

- coined the name "tangle".
- axiomatised the $\mathcal{L}_{\square}^{\langle t\rangle}$-logic of the class of all (finite) S4-frames, as S4 +

$$
\begin{aligned}
& \text { Fix: }\langle t\rangle \Gamma \rightarrow \diamond(\gamma \wedge\langle t\rangle \Gamma), \quad \text { all } \gamma \in \Gamma . \\
& \text { Ind: } \square\left(\varphi \rightarrow \bigwedge_{\gamma \in \Gamma} \diamond(\gamma \wedge \varphi)\right) \rightarrow(\varphi \rightarrow\langle t\rangle \Gamma) .
\end{aligned}
$$

- provided its topological interpretation, with closure in place of R^{-1}.

The derivative modality language $\mathcal{L}_{[d]}$

Replace \square and \diamond by $[d]$ and $\langle d\rangle$, with $\llbracket\langle d\rangle \varphi \rrbracket=R^{-1} \llbracket \varphi \rrbracket$
Define $\square \varphi$ as $\varphi \wedge[d] \varphi$, and $\diamond \varphi=\varphi \vee\langle d\rangle \varphi$.
In a topological space X, the derivative of a subset S is

$$
\text { doniv } S=\{x \in X: x \text { is a limit point of } S\} \text {. }
$$

$x \in \operatorname{deriv} S$ iff every neighbourhood O of x has $(O \backslash\{x\}) \cap S \neq \emptyset$.
In a model on $X, \pi\langle\langle \rangle \varphi\rangle=$ deriv $\Pi \varphi \pi$, so
$x \models\langle d\rangle \varphi$ iff every punctured neighbourhood of x intersects $\llbracket \varphi \rrbracket$,
$x \perp[d] \varphi$ iff some punctured neighbourhood of x is included in $\Pi \varphi\rangle$.

The derivative modality language $\mathcal{L}_{[d]}$

Replace \square and \diamond by $[d]$ and $\langle d\rangle$, with $\llbracket\langle d\rangle \varphi \rrbracket=R^{-1} \llbracket \varphi \rrbracket$
Define $\square \varphi$ as $\varphi \wedge[d] \varphi$, and $\diamond \varphi=\varphi \vee\langle d\rangle \varphi$.
In a topological space X, the derivative of a subset S is

$$
\text { deriv } S=\{x \in X: x \text { is a limit point of } S\} .
$$

$x \in \operatorname{deriv} S$ iff every neighbourhood O of x has $(O \backslash\{x\}) \cap S \neq \emptyset$.
In a model on $X, \quad[\langle d\rangle \varphi]=\operatorname{deriv}[\varphi]$, so
$x \models\langle d\rangle \varphi$ iff every punctured neighbourhood of x intersects $\llbracket \varphi \rrbracket$,
$x=[d] \varphi$ iff some punctured neighbourhood of x is included in $\llbracket \varphi\rceil$.

The derivative modality language $\mathcal{L}_{[d]}$

Replace \square and \diamond by $[d]$ and $\langle d\rangle$, with $\llbracket\langle d\rangle \varphi \rrbracket=R^{-1} \llbracket \varphi \rrbracket$
Define $\square \varphi$ as $\varphi \wedge[d] \varphi$, and $\diamond \varphi=\varphi \vee\langle d\rangle \varphi$.
In a topological space X, the derivative of a subset S is

$$
\text { deriv } S=\{x \in X: x \text { is a limit point of } S\} .
$$

$x \in \operatorname{deriv} S$ iff every neighbourhood O of x has $(O \backslash\{x\}) \cap S \neq \emptyset$.
In a model on $X, \llbracket\langle d\rangle \varphi \rrbracket=\operatorname{deriv} \llbracket \varphi \rrbracket$, so
$x \models\langle d\rangle \varphi$ iff every punctured neighbourhood of x intersects $\llbracket \varphi \rrbracket$,
$x \models[d] \varphi$ iff some punctured neighbourhood of x is included in $\llbracket \varphi \rrbracket$.

$\mathcal{L}_{[d]}$ is more expressive than \mathcal{L}_{\square}

- $\llbracket \square \varphi \rrbracket=$ the interior of $\llbracket \varphi \rrbracket . \quad \llbracket \diamond \varphi \rrbracket=$ the closure of $\llbracket \varphi \rrbracket$.
- Validity of the R-transitivity axiom

$$
4: \quad\langle d\rangle\langle d\rangle \varphi \rightarrow\langle d\rangle \varphi
$$

holds iff X is a T_{D} space, meaning deriv $\{x\}$ is always closed. [Aull \& Thron 1962]

- Validity of the axiom
holds iff X is dense-in-itself, i.e. no isolated points.

$\mathcal{L}_{[d]}$ is more expressive than \mathcal{L}_{\square}

- $\llbracket \square \varphi \rrbracket=$ the interior of $\llbracket \varphi \rrbracket . \quad \llbracket \diamond \varphi \rrbracket=$ the closure of $\llbracket \varphi \rrbracket$.
- Validity of the R-transitivity axiom

$$
4: \quad\langle d\rangle\langle d\rangle \varphi \rightarrow\langle d\rangle \varphi
$$

holds iff X is a T_{D} space, meaning deriv $\{x\}$ is always closed. [Aull \& Thron 1962]

- Validity of the axiom

$$
\mathrm{D}: \quad\langle d\rangle \top
$$

holds iff X is dense-in-itself, i.e. no isolated points.

Validity of D in a frame holds iff R is total:

$\mathcal{L}_{[d]}$ is more expressive than \mathcal{L}_{\square}

- $\llbracket \square \varphi \rrbracket=$ the interior of $\llbracket \varphi \rrbracket . \quad \llbracket \diamond \varphi \rrbracket=$ the closure of $\llbracket \varphi \rrbracket$.
- Validity of the R-transitivity axiom

$$
4: \quad\langle d\rangle\langle d\rangle \varphi \rightarrow\langle d\rangle \varphi
$$

holds iff X is a T_{D} space, meaning deriv $\{x\}$ is always closed. [Aull \& Thron 1962]

- Validity of the axiom

$$
\mathrm{D}: \quad\langle d\rangle \top
$$

holds iff X is dense-in-itself, i.e. no isolated points.

Validity of D in a frame holds iff R is total: $\forall x \exists y(x R y)$.

Shehtman 1990:

Derived sets in Euclidean spaces and modal logic.
Proved

- the $\mathcal{L}_{[d]}$-logic of every zero-dimensional separable dense-in-itself metric space is KD4.
- the $\mathcal{L}_{[d]}$-logic of the Euclidean space \mathbb{R}^{n} for any $n \geq 2$ is

$$
\mathrm{KD} 4+\mathrm{G}_{1}:\langle d\rangle p \wedge\langle d\rangle \neg p \rightarrow\langle d\rangle(\diamond p \wedge \diamond \neg p)
$$

- the $\mathcal{L}_{[d]}$-logic of the real line \mathbb{R} is $\mathrm{KD} 4+\mathrm{G}_{2}$, where G_{n} is

[Proven later by Shehtman, and by Lucero-Bryan]
- Is KD4G ${ }_{1}$ the largest logic of any dense-in-itself metric space?

Shehtman 1990:

Derived sets in Euclidean spaces and modal logic.
Proved

- the $\mathcal{L}_{[d]}$-logic of every zero-dimensional separable dense-in-itself metric space is KD4.
- the $\mathcal{L}_{[d]}$-logic of the Euclidean space \mathbb{R}^{n} for any $n \geq 2$ is

$$
\mathrm{KD} 4+\mathrm{G}_{1}:\langle d\rangle p \wedge\langle d\rangle \neg p \rightarrow\langle d\rangle(\diamond p \wedge \diamond \neg p)
$$

Conjectured

- the $\mathcal{L}_{[d]}$-logic of the real line \mathbb{R} is $\mathrm{KD} 4+\mathrm{G}_{2}$, where G_{n} is

$$
\bigwedge_{i \leq n}\langle d\rangle Q_{i} \rightarrow\langle d\rangle\left(\bigwedge_{i \leq n} \diamond \neg Q_{i}\right), \quad \text { with } Q_{i}=p_{i} \wedge \bigwedge_{i \neq j \leq n} \neg p_{j} .
$$

[Proven later by Shehtman, and by Lucero-Bryan]

Shehtman 1990:

Derived sets in Euclidean spaces and modal logic.
Proved

- the $\mathcal{L}_{[d]}$-logic of every zero-dimensional separable dense-in-itself metric space is KD4.
- the $\mathcal{L}_{[d]}$-logic of the Euclidean space \mathbb{R}^{n} for any $n \geq 2$ is

$$
\mathrm{KD} 4+\mathrm{G}_{1}:\langle d\rangle p \wedge\langle d\rangle \neg p \rightarrow\langle d\rangle(\diamond p \wedge \diamond \neg p)
$$

Conjectured

- the $\mathcal{L}_{[d]}$-logic of the real line \mathbb{R} is $\mathrm{KD} 4+\mathrm{G}_{2}$, where G_{n} is

$$
\bigwedge_{i \leq n}\langle d\rangle Q_{i} \rightarrow\langle d\rangle\left(\bigwedge_{i \leq n} \diamond \neg Q_{i}\right), \quad \text { with } Q_{i}=p_{i} \wedge \bigwedge_{i \neq j \leq n} \neg p_{j}
$$

[Proven later by Shehtman, and by Lucero-Bryan]
Asked

- Is $\mathrm{KD}_{4} \mathrm{G}_{1}$ the largest logic of any dense-in-itself metric space?

The tangled derivative language $\mathcal{L}_{\square}^{\langle d t\rangle}$

Replace $\langle t\rangle$ by $\langle d t\rangle$.
Interpret $\langle d t\rangle$ by replacing R^{-1} by deriv:
In a model on space X,

$$
\begin{aligned}
\llbracket\langle d t\rangle \Gamma \rrbracket & =\text { the tangled derivative of }\{\llbracket \gamma \rrbracket: \gamma \in \Gamma\} . \\
& =\bigcup\left\{S \subseteq X: S \subseteq \bigcap_{\gamma \in \Gamma} \operatorname{deriv}(\llbracket \gamma \rrbracket \cap S)\right\} .
\end{aligned}
$$

Whereas,
$\llbracket\langle t\rangle \Gamma \rrbracket=$ the tangled closure of $\{\lfloor\gamma \rrbracket: \gamma \in \Gamma\}$.

The tangled derivative language $\mathcal{L}_{\square}^{\langle d t\rangle}$

Replace $\langle t\rangle$ by $\langle d t\rangle$.
Interpret $\langle d t\rangle$ by replacing R^{-1} by deriv:
In a model on space X,

$$
\begin{aligned}
\llbracket\langle d t\rangle \Gamma \rrbracket & =\text { the tangled derivative of }\{\llbracket \gamma \rrbracket: \gamma \in \Gamma\} . \\
& =\bigcup\left\{S \subseteq X: S \subseteq \bigcap_{\gamma \in \Gamma} \operatorname{deriv}(\llbracket \gamma \rrbracket \cap S)\right\} .
\end{aligned}
$$

Whereas,

$$
\begin{aligned}
\llbracket\langle t\rangle \Gamma \rrbracket & =\text { the tangled closure of }\{\llbracket \gamma \rrbracket: \gamma \in \Gamma\} . \\
& =\bigcup\left\{S \subseteq X: S \subseteq \bigcap_{\gamma \in \Gamma} \operatorname{closure}(\llbracket \gamma \rrbracket \cap S)\right\}
\end{aligned}
$$

Defining $\langle t\rangle$ from $\langle d t\rangle$

In a topological space $X,\langle t\rangle \Gamma$ is equivalent to

$$
(\bigwedge \Gamma) \vee\langle d\rangle(\bigwedge \Gamma) \vee\langle d t\rangle \Gamma
$$

if, and only if X is a T_{D} space.

Axioms for logics:

Let L be any logic in some language.

- $L t$ is the extension of L by the tangle axioms

- L.U is the extension of L that has the universal modality \forall with semantics

$$
x \models \forall \varphi \text { iff for all } y \in W, y \models \varphi,
$$

the S5 axioms and rules for \forall, and the axiom $\forall \varphi \rightarrow[d] \varphi$.

- L.UC is the extension of L.U for which C is the axiom

expressing topological connectedness.

Axioms for logics:
Let L be any logic in some language.

- $L t$ is the extension of L by the tangle axioms

Fix: $\langle d t\rangle \Gamma \rightarrow\langle d\rangle(\gamma \wedge\langle d t\rangle \Gamma)$
Ind: $\quad \square\left(\varphi \rightarrow \bigwedge_{\gamma \in \Gamma}\langle d\rangle(\gamma \wedge \varphi)\right) \rightarrow(\varphi \rightarrow\langle d t\rangle \Gamma)$.

- L. U is the extension of L that has the universal modality \forall with semantics

$$
x \models \forall \varphi \text { iff for all } y \in W, y \models \varphi,
$$

the S5 axioms and rules for \forall, and the axiom $\forall \varphi \rightarrow[d] \varphi$.

- L.UC is the extension of L.U for which C is the axiom

expressing topological connectedness.

Axioms for logics:

Let L be any logic in some language.

- $L t$ is the extension of L by the tangle axioms

Fix: $\langle d t\rangle \Gamma \rightarrow\langle d\rangle(\gamma \wedge\langle d t\rangle \Gamma)$
Ind: $\quad \square\left(\varphi \rightarrow \wedge_{\gamma \in \Gamma}\langle d\rangle(\gamma \wedge \varphi)\right) \rightarrow(\varphi \rightarrow\langle d t\rangle \Gamma)$.

- L.U is the extension of L that has the universal modality \forall with semantics

$$
x \models \forall \varphi \text { iff for all } y \in W, y \models \varphi \text {, }
$$

the S5 axioms and rules for \forall, and the axiom $\forall \varphi \rightarrow[d] \varphi$.

- L.UC is the extension of $\mathrm{L} . \mathrm{U}$ for which C is the axiom

Axioms for logics:

Let L be any logic in some language.

- $\mathrm{L} t$ is the extension of L by the tangle axioms

Fix: $\langle d t\rangle \Gamma \rightarrow\langle d\rangle(\gamma \wedge\langle d t\rangle \Gamma)$
Ind: $\quad \square\left(\varphi \rightarrow \wedge_{\gamma \in \Gamma}\langle d\rangle(\gamma \wedge \varphi)\right) \rightarrow(\varphi \rightarrow\langle d t\rangle \Gamma)$.

- L.U is the extension of L that has the universal modality \forall with semantics

$$
x \models \forall \varphi \text { iff for all } y \in W, y \models \varphi \text {, }
$$

the S5 axioms and rules for \forall, and the axiom $\forall \varphi \rightarrow[d] \varphi$.

- L.UC is the extension of L.U for which C is the axiom

$$
\forall(\square \varphi \vee \square \neg \varphi) \rightarrow(\forall \varphi \vee \forall \neg \varphi),
$$

expressing topological connectedness.

Let X be any dense-in-itself metric space

language	logic complete over X	sound over X
$\mathcal{L}_{\square}^{\langle t\rangle}$	$\mathrm{S} 4 t$	yes
$\mathcal{L}_{\square \forall}$	$\mathrm{S} 4 . \mathrm{UC}$	if X connected
$\mathcal{L}_{\square \forall}^{\langle t\rangle}$	$\mathrm{S} 4 t . \mathrm{UC}$	if X connected
$\mathcal{L}_{[d]}$	${\mathrm{KD} 4 \mathrm{G}_{1} 1}$	if G_{1} valid in X
$\mathcal{L}_{[d]}^{\langle d t\rangle}$	$\mathrm{KD4G}_{1} t$	if G_{1} valid in X
$\mathcal{L}_{[d] \forall}$	$\mathrm{KD4GG}_{1} . \mathrm{UC}$	if X connected \& validates G_{1}
$\mathcal{L}_{[d] \forall}^{\langle d t\rangle}$	$\mathrm{KD4G}_{1} t . \mathrm{UC}$	if X connected \& validates G_{1}

[^0]The Case of \mathbb{R} :

- The $\mathcal{L}_{[d]}^{\langle d t\rangle}$-logic of \mathbb{R} is $\mathrm{KD}^{\left\langle\mathrm{G}_{2}\right.}$ t.
- The $\mathcal{L}_{[d] \forall}^{\langle d t\rangle}$-logic of \mathbb{R} is $\mathrm{KD}^{\langle\mathrm{G}} \mathrm{G}_{2} t$.UC.

The Zero-Dimensional case:
Let X be any zero-dimensional dense-in-itself metric space.

- The \mathcal{E} (du-logic of X is KD4.
- The $\mathcal{L}_{[d]}^{\langle d t\rangle}$-logic of X is $\mathrm{KD} 4 t$.
- The $\mathcal{L}^{(d t)}\left(V^{(\text {logic of } X}\right.$ is KD4t.U.

The Case of \mathbb{R} :

- The $\mathcal{L}_{[d]}^{\langle d t\rangle}$-logic of \mathbb{R} is $\mathrm{KD}^{\left\langle\mathrm{G}_{2}\right.}$ t.
- The $\mathcal{L}_{[d] \forall}^{\langle d t\rangle}$-logic of \mathbb{R} is $\mathrm{KD}^{\langle\mathrm{G}} \mathrm{G}_{2} t$.UC.

The Zero-Dimensional case:
Let X be any zero-dimensional dense-in-itself metric space.

- The $\mathcal{L}_{[d]}$-logic of X is KD4.
- The $\mathcal{L}_{[d]}^{\langle d t\rangle}$-logic of X is KD4t.
- The $\mathcal{L}_{[d]\rangle}^{\langle d t\rangle}$-logic of X is $\mathrm{KD} 4 t$.U.

Strong completeness: 'consistent sets are satisfiable'

- Let L be $\mathrm{KD}_{\text {- }} \mathrm{G}_{1}$ or $\mathrm{KD}_{4} \mathrm{G}_{1} t$ or $\mathrm{S} 4 t$. Then any countable L-consistent set of formulas is satisfiable in any dense-in-itself metric space.
- Any countable KD4t-consistent set of formulas is satisfiable in any zero-dimensional dense-in-itself metric space.

Can fail for frame and spatial semantics for "large enough" sets:

Not satisfiable in frame \mathcal{F} if $\kappa>\operatorname{card} \mathcal{F}$.
Not satisfiable in space X if $k>2^{\text {card } X}$.

Strong completeness: 'consistent sets are satisfiable’

- Let L be $\mathrm{KD}_{4} \mathrm{G}_{1}$ or $\mathrm{KD}_{4} \mathrm{G}_{1} t$ or $\mathrm{S} 4 t$. Then any countable L-consistent set of formulas is satisfiable in any dense-in-itself metric space.
- Any countable KD4t-consistent set of formulas is satisfiable in any zero-dimensional dense-in-itself metric space.

Can fail for frame and spatial semantics for "large enough" sets:

Not satisfiable in frame \mathcal{F} if $\kappa>\operatorname{card} \mathcal{F}$.
Not satisfiable in space X if $n>2^{\text {card } X}$

Strong completeness: 'consistent sets are satisfiable'

- Let L be $\mathrm{KD}_{4} \mathrm{G}_{1}$ or $\mathrm{KD}_{4} \mathrm{G}_{1} t$ or $\mathrm{S} 4 t$. Then any countable L-consistent set of formulas is satisfiable in any dense-in-itself metric space.
- Any countable KD4t-consistent set of formulas is satisfiable in any zero-dimensional dense-in-itself metric space.

Can fail for frame and spatial semantics for "large enough" sets:

Not satisfiable in frame \mathcal{F} if $\kappa>\operatorname{card} \mathcal{F}$.
Not satisfiable in space X if $\kappa>2$ card X

Strong completeness: 'consistent sets are satisfiable'

- Let L be $\mathrm{KD}_{4} \mathrm{G}_{1}$ or $\mathrm{KD}_{4} \mathrm{G}_{1} t$ or $\mathrm{S} 4 t$. Then any countable L-consistent set of formulas is satisfiable in any dense-in-itself metric space.
- Any countable KD4t-consistent set of formulas is satisfiable in any zero-dimensional dense-in-itself metric space.

Can fail for frame and spatial semantics for "large enough" sets:

$$
\left\{\diamond p_{i}: i<\kappa\right\} \cup\left\{\neg \diamond\left(p_{i} \wedge p_{j}\right): i<j<\kappa\right\}
$$

Not satisfiable in frame \mathcal{F} if $\kappa>\operatorname{card} \mathcal{F}$.
Not satisfiable in space X if $\kappa>2^{\text {card } X}$.

Strong completeness can fail for Kripke semantics for countable Γ :

$$
\begin{aligned}
\Sigma= & \left\{\diamond p_{0}\right\} \cup \\
& \left\{\square\left(p_{2 n} \rightarrow \diamond\left(p_{2 n+1} \wedge q\right)\right), \square\left(p_{2 n+1} \rightarrow \diamond\left(p_{2 n+2} \wedge \neg q\right)\right): n<\omega\right\}
\end{aligned}
$$

$\Sigma \cup\{\neg\langle t\rangle\{q, \neg q\}\}$ is finitely satisfiable, so is K4t-consistent, but is not satisfiable in any Kripke model.

Also shows that in the canonical model for K4t, the 'Truth Lemma' fails.

Strong completeness can fail for Kripke semantics for countable Γ :

$$
\begin{aligned}
\Sigma= & \left\{\diamond p_{0}\right\} \cup \\
& \left\{\square\left(p_{2 n} \rightarrow \diamond\left(p_{2 n+1} \wedge q\right)\right), \square\left(p_{2 n+1} \rightarrow \diamond\left(p_{2 n+2} \wedge \neg q\right)\right): n<\omega\right\}
\end{aligned}
$$

$\Sigma \cup\{\neg\langle t\rangle\{q, \neg q\}\}$ is finitely satisfiable, so is K4t-consistent, but is not satisfiable in any Kripke model.

Also shows that in the canonical model for $\mathrm{K} 4 t$, the 'Truth Lemma' fails.

Proving a logic L is complete over space X :

(1) Prove the finite model property for L over Kripke frames: if $L \nvdash \varphi$, then φ is falsifiable in some suitable finite frame $\mathcal{F} \models \mathrm{L}$.
(2) Construct a surjective d-morphism $f: X \rightarrow \mathcal{F}$:

$$
f^{-1}\left(R^{-1}(S)\right)=\operatorname{deriv} f^{-1}(S) .
$$

Such an f preserves validity of formulas from X to \mathcal{F}, so $X \not \vDash \varphi$.

Modified Tarski Dissection Theorem

Let X be a dense-in-itself metric space.
Then X is dissectable as follows:
Let \mathbb{G} be a non-empty open subset of X, and let $r, s<\omega$.
Then \mathbb{G} can be partitioned into non-empty subsets

$$
\mathbb{G}_{1}, \ldots, \mathbb{G}_{r}, \mathbb{B}_{0}, \ldots, \mathbb{B}_{s}
$$

such that the \mathbb{G}_{i} 's are all open and

$$
\operatorname{cl}\left(\mathbb{G}_{i}\right) \backslash \mathbb{G}_{i}=\operatorname{deriv}\left(\mathbb{B}_{j}\right)=\operatorname{cl}(\mathbb{G}) \backslash\left(\mathbb{G}_{1} \cup \cdots \cup \mathbb{G}_{r}\right)
$$

This encodes a d-morphism $\mathbb{G} \rightarrow \mathcal{F}$, if \mathcal{F} is a point-generated S 4 -frame.

Further dissections of a dense-in-itself metric X

(1) Let \mathbb{G} be a non-empty open subset of X, and let $k<\omega$. Then there are pairwise disjoint non-empty subsets $\mathbb{I}_{0}, \ldots, \mathbb{I}_{k} \subseteq \mathbb{G}$ satisfying

$$
\operatorname{deriv} \mathbb{I}_{i}=\operatorname{cl}(\mathbb{G}) \backslash \mathbb{G} \quad \text { for each } i \leq k
$$

(2) Let X be zero-dimensional.

If \mathbb{G} is a non-empty open subset of X, and $n<\omega$, then \mathbb{G} can be partitioned into non-empty open subsets $\mathbb{G}_{0}, \ldots, \mathbb{G}_{n}$ such that

$$
\operatorname{cl}\left(\mathbb{G}_{i}\right) \backslash \mathbb{G}_{i}=\operatorname{cl}(\mathbb{G}) \backslash \mathbb{G} \text { for each } i \leq n
$$

[^0]: ${ }^{1}$ answers Shehtman's question

