
Randomized algorithms in computability theory

Laurent Bienvenu (CNRS & University of Paris 7)

Logic Colloquium, Leeds, UK

August
1st, 2016



1. How useful is randomness?



How useful is randomness? (1)

Whether having access to a ‘random source’ can help use achieve more than
what we could do without is perhaps one of the most fundamental questions in
theoretical computer science.

P: Class of languages which can be decided in (deterministic) polynomial time.

BPP: Class of languages which can be decided in polynomial time if given
access to a random source, with probability, say, 0.99.

Open
question: Does
P =
BPP?

3/39



How useful is randomness? (2)

The analogue question in computability theory has been resolved a long time
ago.

Theorem
(De
Leeuw-Moore-Shannon-Shapiro, 1956)
Let X be an infinite binary sequence (or language). If there is an algorithm (ma-
chine)Φ with access to a random source R (also a sequence of bits) such that

Pr[Φ(R) = X] > 0,

then X is computable.

Theorem
(De
Leeuw-Moore-Shannon-Shapiro, 1956)
Let X be an infinite binary sequence (or language). If there is an algorithm (ma-
chine)Φ with access to a random source R (also a sequence of bits) such that

Pr[Φ(R) = X] > 0,

then X is computable.

Proof. If the probability is > 1/2, find the value of each bit of X by a ‘majority
vote’. If not, apply the Lebesgue density theorem to get a relative probability
> 1/2 and do the same.

4/39



How useful is randomness? (2)

The analogue question in computability theory has been resolved a long time
ago.

Theorem
(De
Leeuw-Moore-Shannon-Shapiro, 1956)
Let X be an infinite binary sequence (or language). If there is an algorithm (ma-
chine)Φ with access to a random source R (also a sequence of bits) such that

Pr[Φ(R) = X] > 0,

then X is computable.

Theorem
(De
Leeuw-Moore-Shannon-Shapiro, 1956)
Let X be an infinite binary sequence (or language). If there is an algorithm (ma-
chine)Φ with access to a random source R (also a sequence of bits) such that

Pr[Φ(R) = X] > 0,

then X is computable.

Proof. If the probability is > 1/2, find the value of each bit of X by a ‘majority
vote’. If not, apply the Lebesgue density theorem to get a relative probability
> 1/2 and do the same.

4/39



How useful is randomness? (2)

The analogue question in computability theory has been resolved a long time
ago.

Theorem
(De
Leeuw-Moore-Shannon-Shapiro, 1956)
Let X be an infinite binary sequence (or language). If there is an algorithm (ma-
chine)Φ with access to a random source R (also a sequence of bits) such that

Pr[Φ(R) = X] > 0,

then X is computable.

Theorem
(De
Leeuw-Moore-Shannon-Shapiro, 1956)
Let X be an infinite binary sequence (or language). If there is an algorithm (ma-
chine)Φ with access to a random source R (also a sequence of bits) such that

Pr[Φ(R) = X] > 0,

then X is computable.

Proof. If the probability is > 1/2, find the value of each bit of X by a ‘majority
vote’. If not, apply the Lebesgue density theorem to get a relative probability
> 1/2 and do the same.

4/39



Mass problems (1)
But the story does not end here if we consider mass
problems (computability
analogue of search problems in complexity theory).

Definition
A mass
problem is a set A of infinite binary sequences. Its members can be
viewed as its ‘solutions’.

Definition
A mass
problem is a set A of infinite binary sequences. Its members can be
viewed as its ‘solutions’.

Definition
A is easier (not harder) to solve than B if we can computably get some solution
of A from any solution of B.

Non-uniform version, noted A ≤w B:

for every X ∈ B there isΦ such thatΦ(X) ∈ A

Uniform version, noted A ≤s B:

there isΦ such that for every X ∈ B,Φ(X) ∈ A

Definition
A is easier (not harder) to solve than B if we can computably get some solution
of A from any solution of B.

Non-uniform version, noted A ≤w B:

for every X ∈ B there isΦ such thatΦ(X) ∈ A

Uniform version, noted A ≤s B:

there isΦ such that for every X ∈ B,Φ(X) ∈ A

5/39



Mass problems (1)
But the story does not end here if we consider mass
problems (computability
analogue of search problems in complexity theory).

Definition
A mass
problem is a set A of infinite binary sequences. Its members can be
viewed as its ‘solutions’.

Definition
A mass
problem is a set A of infinite binary sequences. Its members can be
viewed as its ‘solutions’.

Definition
A is easier (not harder) to solve than B if we can computably get some solution
of A from any solution of B.

Non-uniform version, noted A ≤w B:

for every X ∈ B there isΦ such thatΦ(X) ∈ A

Uniform version, noted A ≤s B:

there isΦ such that for every X ∈ B,Φ(X) ∈ A

Definition
A is easier (not harder) to solve than B if we can computably get some solution
of A from any solution of B.

Non-uniform version, noted A ≤w B:

for every X ∈ B there isΦ such thatΦ(X) ∈ A

Uniform version, noted A ≤s B:

there isΦ such that for every X ∈ B,Φ(X) ∈ A

5/39



Mass problems (2)

A mass problem is trivial (easier than any other one) iff it contains a computable
member.

Examples of non-trivial problems:

nCOMP: non-computable sequences(!).

PA: complete, coherent extensions of Peano Arithmetic.

HIGH: functions f : N → N which dominate all computable functions (for
every g computable, g(n) ≤ f(n) for all but finitely many n).

HI: functions f : N → N which are dominated by no computable function (for
every g computable, g(n) ≤ f(n) for infinitely many n).

DNC: functions f : N → N such that f(e) ̸= ϕe(e) wheneverϕe(e) is defined.

DNCbis: functions f : N → N such that K(f(n)) > n.

6/39



Mass problems (2)

A mass problem is trivial (easier than any other one) iff it contains a computable
member. Examples of non-trivial problems:

nCOMP: non-computable sequences(!).

PA: complete, coherent extensions of Peano Arithmetic.

HIGH: functions f : N → N which dominate all computable functions (for
every g computable, g(n) ≤ f(n) for all but finitely many n).

HI: functions f : N → N which are dominated by no computable function (for
every g computable, g(n) ≤ f(n) for infinitely many n).

DNC: functions f : N → N such that f(e) ̸= ϕe(e) wheneverϕe(e) is defined.

DNCbis: functions f : N → N such that K(f(n)) > n.

6/39



Mass problems (2)

A mass problem is trivial (easier than any other one) iff it contains a computable
member. Examples of non-trivial problems:

nCOMP: non-computable sequences(!).

PA: complete, coherent extensions of Peano Arithmetic.

HIGH: functions f : N → N which dominate all computable functions (for
every g computable, g(n) ≤ f(n) for all but finitely many n).

HI: functions f : N → N which are dominated by no computable function (for
every g computable, g(n) ≤ f(n) for infinitely many n).

DNC: functions f : N → N such that f(e) ̸= ϕe(e) wheneverϕe(e) is defined.

DNCbis: functions f : N → N such that K(f(n)) > n.

6/39



Mass problems (2)

A mass problem is trivial (easier than any other one) iff it contains a computable
member. Examples of non-trivial problems:

nCOMP: non-computable sequences(!).

PA: complete, coherent extensions of Peano Arithmetic.

HIGH: functions f : N → N which dominate all computable functions (for
every g computable, g(n) ≤ f(n) for all but finitely many n).

HI: functions f : N → N which are dominated by no computable function (for
every g computable, g(n) ≤ f(n) for infinitely many n).

DNC: functions f : N → N such that f(e) ̸= ϕe(e) wheneverϕe(e) is defined.

DNCbis: functions f : N → N such that K(f(n)) > n.

6/39



Mass problems (2)

A mass problem is trivial (easier than any other one) iff it contains a computable
member. Examples of non-trivial problems:

nCOMP: non-computable sequences(!).

PA: complete, coherent extensions of Peano Arithmetic.

HIGH: functions f : N → N which dominate all computable functions (for
every g computable, g(n) ≤ f(n) for all but finitely many n).

HI: functions f : N → N which are dominated by no computable function (for
every g computable, g(n) ≤ f(n) for infinitely many n).

DNC: functions f : N → N such that f(e) ̸= ϕe(e) wheneverϕe(e) is defined.

DNCbis: functions f : N → N such that K(f(n)) > n.

6/39



Mass problems (2)

A mass problem is trivial (easier than any other one) iff it contains a computable
member. Examples of non-trivial problems:

nCOMP: non-computable sequences(!).

PA: complete, coherent extensions of Peano Arithmetic.

HIGH: functions f : N → N which dominate all computable functions (for
every g computable, g(n) ≤ f(n) for all but finitely many n).

HI: functions f : N → N which are dominated by no computable function (for
every g computable, g(n) ≤ f(n) for infinitely many n).

DNC: functions f : N → N such that f(e) ̸= ϕe(e) wheneverϕe(e) is defined.

DNCbis: functions f : N → N such that K(f(n)) > n.

6/39



Mass problems (2)

A mass problem is trivial (easier than any other one) iff it contains a computable
member. Examples of non-trivial problems:

nCOMP: non-computable sequences(!).

PA: complete, coherent extensions of Peano Arithmetic.

HIGH: functions f : N → N which dominate all computable functions (for
every g computable, g(n) ≤ f(n) for all but finitely many n).

HI: functions f : N → N which are dominated by no computable function (for
every g computable, g(n) ≤ f(n) for infinitely many n).

DNC: functions f : N → N such that f(e) ̸= ϕe(e) wheneverϕe(e) is defined.

DNCbis: functions f : N → N such that K(f(n)) > n.

6/39



Mass problems (3)

If we now allow probabilistic computations, then some non-trivial mass problems
become easily ‘solvable’.

• The most obvious is nCOMP: just output your random source!

•DNC is also pretty easy: for all e we are trying to avoid a single value: ϕe(e)
(if it is even defined). Thus it suffices to pick the value of f(e) at random
between 0 and q(e), for a function q such that

∏
e(1 − 1/q(e)) > 0.

• Much more interesting is the case ofHI (functions f : N → N not dominated
by any computable one)... We will come back to it later.

7/39



Mass problems (3)

If we now allow probabilistic computations, then some non-trivial mass problems
become easily ‘solvable’.

• The most obvious is nCOMP: just output your random source!

•DNC is also pretty easy: for all e we are trying to avoid a single value: ϕe(e)
(if it is even defined). Thus it suffices to pick the value of f(e) at random
between 0 and q(e), for a function q such that

∏
e(1 − 1/q(e)) > 0.

• Much more interesting is the case ofHI (functions f : N → N not dominated
by any computable one)... We will come back to it later.

7/39



Mass problems (3)

If we now allow probabilistic computations, then some non-trivial mass problems
become easily ‘solvable’.

• The most obvious is nCOMP: just output your random source!

•DNC is also pretty easy: for all e we are trying to avoid a single value: ϕe(e)
(if it is even defined). Thus it suffices to pick the value of f(e) at random
between 0 and q(e), for a function q such that

∏
e(1 − 1/q(e)) > 0.

• Much more interesting is the case ofHI (functions f : N → N not dominated
by any computable one)... We will come back to it later.

7/39



Mass problems (3)

If we now allow probabilistic computations, then some non-trivial mass problems
become easily ‘solvable’.

• The most obvious is nCOMP: just output your random source!

•DNC is also pretty easy: for all e we are trying to avoid a single value: ϕe(e)
(if it is even defined). Thus it suffices to pick the value of f(e) at random
between 0 and q(e), for a function q such that

∏
e(1 − 1/q(e)) > 0.

• Much more interesting is the case ofHI (functions f : N → N not dominated
by any computable one)... We will come back to it later.

7/39



Mass problems (4)
Of course a lot of mass problems that are unsolvable by deterministic means
remain unsolvable if we allow randomized algorithms. For example:

HIGH: functions f : N → N which dominate all computable functions (for
every g computable, g(n) ≤ f(n) for all but finitely many n).

Indeed, if someΦ generates a member ofHIGH with positive probability, then
we can again use Lebesgue’s density theorem to get a Ψ such that Ψ generates
a member ofHIGH with probability > 2/3.

Then we can apply a version of ‘majority vote’: for each n, wait until Ψ(R)(n)
returns a value for 2/3 of R ′s. Take g(n) = the maximum value seen over all
those R’s. Then g is computable and for every n:

Pr[Ψ(R)(n) > g(n)] ≤ 1/3

and by Fatou’s lemma,

Pr[Ψ(R) dominates g] ≤ 1/3

8/39



Mass problems (4)
Of course a lot of mass problems that are unsolvable by deterministic means
remain unsolvable if we allow randomized algorithms. For example:

HIGH: functions f : N → N which dominate all computable functions (for
every g computable, g(n) ≤ f(n) for all but finitely many n).

Indeed, if someΦ generates a member ofHIGH with positive probability, then
we can again use Lebesgue’s density theorem to get a Ψ such that Ψ generates
a member ofHIGH with probability > 2/3.

Then we can apply a version of ‘majority vote’: for each n, wait until Ψ(R)(n)
returns a value for 2/3 of R ′s. Take g(n) = the maximum value seen over all
those R’s. Then g is computable and for every n:

Pr[Ψ(R)(n) > g(n)] ≤ 1/3

and by Fatou’s lemma,

Pr[Ψ(R) dominates g] ≤ 1/3

8/39



Mass problems (4)
Of course a lot of mass problems that are unsolvable by deterministic means
remain unsolvable if we allow randomized algorithms. For example:

HIGH: functions f : N → N which dominate all computable functions (for
every g computable, g(n) ≤ f(n) for all but finitely many n).

Indeed, if someΦ generates a member ofHIGH with positive probability, then
we can again use Lebesgue’s density theorem to get a Ψ such that Ψ generates
a member ofHIGH with probability > 2/3.

Then we can apply a version of ‘majority vote’: for each n, wait until Ψ(R)(n)
returns a value for 2/3 of R ′s. Take g(n) = the maximum value seen over all
those R’s. Then g is computable and for every n:

Pr[Ψ(R)(n) > g(n)] ≤ 1/3

and by Fatou’s lemma,

Pr[Ψ(R) dominates g] ≤ 1/3

8/39



Mass problems (4)
Of course a lot of mass problems that are unsolvable by deterministic means
remain unsolvable if we allow randomized algorithms. For example:

HIGH: functions f : N → N which dominate all computable functions (for
every g computable, g(n) ≤ f(n) for all but finitely many n).

Indeed, if someΦ generates a member ofHIGH with positive probability, then
we can again use Lebesgue’s density theorem to get a Ψ such that Ψ generates
a member ofHIGH with probability > 2/3.

Then we can apply a version of ‘majority vote’: for each n, wait until Ψ(R)(n)
returns a value for 2/3 of R ′s. Take g(n) = the maximum value seen over all
those R’s. Then g is computable and for every n:

Pr[Ψ(R)(n) > g(n)] ≤ 1/3

and by Fatou’s lemma,

Pr[Ψ(R) dominates g] ≤ 1/3

8/39



2. Randomness vs depth



Completing PA ‘at random’

We now turn our attention to

PA: complete, coherent extensions of Peano Arithmetic.

As argued by Levin, imagine that members of PA could be generated via a
randomized algorithm... this would be a hard blow to Gödel’s incompleteness
theorem!

(Un)fortunately,
Theorem
(Jockusch-Soare
1972)
For any probabilistic algorithmΦ,

Pr[Φ(R) ∈ PA] = 0

Theorem
(Jockusch-Soare
1972)
For any probabilistic algorithmΦ,

Pr[Φ(R) ∈ PA] = 0

(A later improvement by F. Stephan: if R is Martin-Löf random and computes a
member of PA, then R computes the halting problem ∅ ′).

10/39



Completing PA ‘at random’

We now turn our attention to

PA: complete, coherent extensions of Peano Arithmetic.

As argued by Levin, imagine that members of PA could be generated via a
randomized algorithm... this would be a hard blow to Gödel’s incompleteness
theorem!

(Un)fortunately,
Theorem
(Jockusch-Soare
1972)
For any probabilistic algorithmΦ,

Pr[Φ(R) ∈ PA] = 0

Theorem
(Jockusch-Soare
1972)
For any probabilistic algorithmΦ,

Pr[Φ(R) ∈ PA] = 0

(A later improvement by F. Stephan: if R is Martin-Löf random and computes a
member of PA, then R computes the halting problem ∅ ′).

10/39



Completing PA ‘at random’

We now turn our attention to

PA: complete, coherent extensions of Peano Arithmetic.

As argued by Levin, imagine that members of PA could be generated via a
randomized algorithm... this would be a hard blow to Gödel’s incompleteness
theorem!

(Un)fortunately,
Theorem
(Jockusch-Soare
1972)
For any probabilistic algorithmΦ,

Pr[Φ(R) ∈ PA] = 0

Theorem
(Jockusch-Soare
1972)
For any probabilistic algorithmΦ,

Pr[Φ(R) ∈ PA] = 0

(A later improvement by F. Stephan: if R is Martin-Löf random and computes a
member of PA, then R computes the halting problem ∅ ′).

10/39



Completing PA ‘at random’

We now turn our attention to

PA: complete, coherent extensions of Peano Arithmetic.

As argued by Levin, imagine that members of PA could be generated via a
randomized algorithm... this would be a hard blow to Gödel’s incompleteness
theorem!

(Un)fortunately,
Theorem
(Jockusch-Soare
1972)
For any probabilistic algorithmΦ,

Pr[Φ(R) ∈ PA] = 0

Theorem
(Jockusch-Soare
1972)
For any probabilistic algorithmΦ,

Pr[Φ(R) ∈ PA] = 0

(A later improvement by F. Stephan: if R is Martin-Löf random and computes a
member of PA, then R computes the halting problem ∅ ′).

10/39



Measuring the difficulty

Levin (2013): even generating a large but finite initial segment of a completion of
PA would be great!

Can we quantify how unlikely this is?

The right tool:
Definition
There is a universal
probabilistic
algorithm Ξ, that is, for any probabilistic algo-
rithmΦ, for some constant c all every class C of finite and infinite objects:

Pr[Φ generates a member of C] ≤ c · Pr[Ξ generates a member of C]

Thus we can setM(C) = Pr[Ξ generates a member of C], which is independent

of the choice of Ξ up to a multiplicative constant.

Levin’s coding theorem: M({x}) = 2−K(x) · O(1)

Definition
There is a universal
probabilistic
algorithm Ξ, that is, for any probabilistic algo-
rithmΦ, for some constant c all every class C of finite and infinite objects:

Pr[Φ generates a member of C] ≤ c · Pr[Ξ generates a member of C]

Thus we can setM(C) = Pr[Ξ generates a member of C], which is independent

of the choice of Ξ up to a multiplicative constant.

Levin’s coding theorem: M({x}) = 2−K(x) · O(1)

11/39



Measuring the difficulty

Levin (2013): even generating a large but finite initial segment of a completion of
PA would be great! Can we quantify how unlikely this is?

The right tool:
Definition
There is a universal
probabilistic
algorithm Ξ, that is, for any probabilistic algo-
rithmΦ, for some constant c all every class C of finite and infinite objects:

Pr[Φ generates a member of C] ≤ c · Pr[Ξ generates a member of C]

Thus we can setM(C) = Pr[Ξ generates a member of C], which is independent

of the choice of Ξ up to a multiplicative constant.

Levin’s coding theorem: M({x}) = 2−K(x) · O(1)

Definition
There is a universal
probabilistic
algorithm Ξ, that is, for any probabilistic algo-
rithmΦ, for some constant c all every class C of finite and infinite objects:

Pr[Φ generates a member of C] ≤ c · Pr[Ξ generates a member of C]

Thus we can setM(C) = Pr[Ξ generates a member of C], which is independent

of the choice of Ξ up to a multiplicative constant.

Levin’s coding theorem: M({x}) = 2−K(x) · O(1)

11/39



Measuring the difficulty

Levin (2013): even generating a large but finite initial segment of a completion of
PA would be great! Can we quantify how unlikely this is?

The right tool:
Definition
There is a universal
probabilistic
algorithm Ξ, that is, for any probabilistic algo-
rithmΦ, for some constant c all every class C of finite and infinite objects:

Pr[Φ generates a member of C] ≤ c · Pr[Ξ generates a member of C]

Thus we can setM(C) = Pr[Ξ generates a member of C], which is independent

of the choice of Ξ up to a multiplicative constant.

Levin’s coding theorem: M({x}) = 2−K(x) · O(1)

Definition
There is a universal
probabilistic
algorithm Ξ, that is, for any probabilistic algo-
rithmΦ, for some constant c all every class C of finite and infinite objects:

Pr[Φ generates a member of C] ≤ c · Pr[Ξ generates a member of C]

Thus we can setM(C) = Pr[Ξ generates a member of C], which is independent

of the choice of Ξ up to a multiplicative constant.

Levin’s coding theorem: M({x}) = 2−K(x) · O(1)

11/39



Measuring the difficulty

Levin (2013): even generating a large but finite initial segment of a completion of
PA would be great! Can we quantify how unlikely this is?

The right tool:
Definition
There is a universal
probabilistic
algorithm Ξ, that is, for any probabilistic algo-
rithmΦ, for some constant c all every class C of finite and infinite objects:

Pr[Φ generates a member of C] ≤ c · Pr[Ξ generates a member of C]

Thus we can setM(C) = Pr[Ξ generates a member of C], which is independent

of the choice of Ξ up to a multiplicative constant.

Levin’s coding theorem: M({x}) = 2−K(x) · O(1)

Definition
There is a universal
probabilistic
algorithm Ξ, that is, for any probabilistic algo-
rithmΦ, for some constant c all every class C of finite and infinite objects:

Pr[Φ generates a member of C] ≤ c · Pr[Ξ generates a member of C]

Thus we can setM(C) = Pr[Ξ generates a member of C], which is independent

of the choice of Ξ up to a multiplicative constant.

Levin’s coding theorem: M({x}) = 2−K(x) · O(1)

11/39



Measuring the difficulty

Levin (2013): even generating a large but finite initial segment of a completion of
PA would be great! Can we quantify how unlikely this is?

The right tool:
Definition
There is a universal
probabilistic
algorithm Ξ, that is, for any probabilistic algo-
rithmΦ, for some constant c all every class C of finite and infinite objects:

Pr[Φ generates a member of C] ≤ c · Pr[Ξ generates a member of C]

Thus we can setM(C) = Pr[Ξ generates a member of C], which is independent

of the choice of Ξ up to a multiplicative constant.

Levin’s coding theorem: M({x}) = 2−K(x) · O(1)

Definition
There is a universal
probabilistic
algorithm Ξ, that is, for any probabilistic algo-
rithmΦ, for some constant c all every class C of finite and infinite objects:

Pr[Φ generates a member of C] ≤ c · Pr[Ξ generates a member of C]

Thus we can setM(C) = Pr[Ξ generates a member of C], which is independent

of the choice of Ξ up to a multiplicative constant.

Levin’s coding theorem: M({x}) = 2−K(x) · O(1)

11/39



Measuring the difficulty (2)

Let PAn be the set of coherent finite theories of arithmetical formulas such that
for every formula ψ encodable in n bits, ψ or ¬ψ is in the theory (think of PAn

as the set of strings of length 2n which can be extended into a member of PA).

Theorem
(Levin
2013)
M(PAn) ≤ 2−n+O(1)
Theorem
(Levin
2013)
M(PAn) ≤ 2−n+O(1)

In fact, he proved more:
Theorem
(Levin
2013)
For any x ∈ PAn, I(x : ∅ ′) ≳ n− O(1)
Theorem
(Levin
2013)
For any x ∈ PAn, I(x : ∅ ′) ≳ n− O(1)

This is better since, forΦ a randomized algorithm and Z a finite or infinite object,

E
(

2I(Φ(R): Z)
)
= O(1)

(Zvonkin-Levin’s information conservation theorem)

12/39



Measuring the difficulty (2)

Let PAn be the set of coherent finite theories of arithmetical formulas such that
for every formula ψ encodable in n bits, ψ or ¬ψ is in the theory (think of PAn

as the set of strings of length 2n which can be extended into a member of PA).

Theorem
(Levin
2013)
M(PAn) ≤ 2−n+O(1)
Theorem
(Levin
2013)
M(PAn) ≤ 2−n+O(1)

In fact, he proved more:
Theorem
(Levin
2013)
For any x ∈ PAn, I(x : ∅ ′) ≳ n− O(1)
Theorem
(Levin
2013)
For any x ∈ PAn, I(x : ∅ ′) ≳ n− O(1)

This is better since, forΦ a randomized algorithm and Z a finite or infinite object,

E
(

2I(Φ(R): Z)
)
= O(1)

(Zvonkin-Levin’s information conservation theorem)

12/39



Measuring the difficulty (2)

Let PAn be the set of coherent finite theories of arithmetical formulas such that
for every formula ψ encodable in n bits, ψ or ¬ψ is in the theory (think of PAn

as the set of strings of length 2n which can be extended into a member of PA).

Theorem
(Levin
2013)
M(PAn) ≤ 2−n+O(1)
Theorem
(Levin
2013)
M(PAn) ≤ 2−n+O(1)

In fact, he proved more:
Theorem
(Levin
2013)
For any x ∈ PAn, I(x : ∅ ′) ≳ n− O(1)
Theorem
(Levin
2013)
For any x ∈ PAn, I(x : ∅ ′) ≳ n− O(1)

This is better since, forΦ a randomized algorithm and Z a finite or infinite object,

E
(

2I(Φ(R): Z)
)
= O(1)

(Zvonkin-Levin’s information conservation theorem)

12/39



Measuring the difficulty (2)

Let PAn be the set of coherent finite theories of arithmetical formulas such that
for every formula ψ encodable in n bits, ψ or ¬ψ is in the theory (think of PAn

as the set of strings of length 2n which can be extended into a member of PA).

Theorem
(Levin
2013)
M(PAn) ≤ 2−n+O(1)
Theorem
(Levin
2013)
M(PAn) ≤ 2−n+O(1)

In fact, he proved more:
Theorem
(Levin
2013)
For any x ∈ PAn, I(x : ∅ ′) ≳ n− O(1)
Theorem
(Levin
2013)
For any x ∈ PAn, I(x : ∅ ′) ≳ n− O(1)

This is better since, forΦ a randomized algorithm and Z a finite or infinite object,

E
(

2I(Φ(R): Z)
)
= O(1)

(Zvonkin-Levin’s information conservation theorem)

12/39



A philosophical interlude

The reason Levin cared more about this second result is of philosophical nature.

He wanted to show that there is no
physical
mean that allows us to get a
completion of Peano arithmetic (or even a large finite initial segment thereof),
thus strengthening Gödel’s theorem.

To do this, he proposes the following thesis:

Independence
Postulate
(IP): if x is an object obtainable in the physical world,
and y is a mathematically definable sequence, then I(x : y) ought to be small.

In particular, for x physically obtainable, I(x : ∅ ′) is small. On the other hand
completions of PA have high common information with ∅ ′ (Levin’s theorem).
Thus they cannot be physically obtainable!

13/39



A philosophical interlude

The reason Levin cared more about this second result is of philosophical nature.

He wanted to show that there is no
physical
mean that allows us to get a
completion of Peano arithmetic (or even a large finite initial segment thereof),
thus strengthening Gödel’s theorem.

To do this, he proposes the following thesis:

Independence
Postulate
(IP): if x is an object obtainable in the physical world,
and y is a mathematically definable sequence, then I(x : y) ought to be small.

In particular, for x physically obtainable, I(x : ∅ ′) is small. On the other hand
completions of PA have high common information with ∅ ′ (Levin’s theorem).
Thus they cannot be physically obtainable!

13/39



A philosophical interlude

The reason Levin cared more about this second result is of philosophical nature.

He wanted to show that there is no
physical
mean that allows us to get a
completion of Peano arithmetic (or even a large finite initial segment thereof),
thus strengthening Gödel’s theorem.

To do this, he proposes the following thesis:

Independence
Postulate
(IP): if x is an object obtainable in the physical world,
and y is a mathematically definable sequence, then I(x : y) ought to be small.

In particular, for x physically obtainable, I(x : ∅ ′) is small. On the other hand
completions of PA have high common information with ∅ ′ (Levin’s theorem).
Thus they cannot be physically obtainable!

13/39



A philosophical interlude

The reason Levin cared more about this second result is of philosophical nature.

He wanted to show that there is no
physical
mean that allows us to get a
completion of Peano arithmetic (or even a large finite initial segment thereof),
thus strengthening Gödel’s theorem.

To do this, he proposes the following thesis:

Independence
Postulate
(IP): if x is an object obtainable in the physical world,
and y is a mathematically definable sequence, then I(x : y) ought to be small.

In particular, for x physically obtainable, I(x : ∅ ′) is small. On the other hand
completions of PA have high common information with ∅ ′ (Levin’s theorem).
Thus they cannot be physically obtainable!

13/39



A philosophical interlude

The reason Levin cared more about this second result is of philosophical nature.

He wanted to show that there is no
physical
mean that allows us to get a
completion of Peano arithmetic (or even a large finite initial segment thereof),
thus strengthening Gödel’s theorem.

To do this, he proposes the following thesis:

Independence
Postulate
(IP): if x is an object obtainable in the physical world,
and y is a mathematically definable sequence, then I(x : y) ought to be small.

In particular, for x physically obtainable, I(x : ∅ ′) is small. On the other hand
completions of PA have high common information with ∅ ′ (Levin’s theorem).
Thus they cannot be physically obtainable!

13/39



Deep classes (1)

Regardless of whether one believes in the IP, one can see that Levin’s argument
works under more general assumptions:

Definition
(B., Porter)
Let P be a Π0

1 class. Let Pn be a set of finite strings of length n which can be
extended to an element of P . We say that P is deep if

M(Pn) ≤
1

h(n)

for some computable h which tends to infinity.

Definition
(B., Porter)
Let P be a Π0

1 class. Let Pn be a set of finite strings of length n which can be
extended to an element of P . We say that P is deep if

M(Pn) ≤
1

h(n)

for some computable h which tends to infinity.

14/39



Deep classes (1)

Regardless of whether one believes in the IP, one can see that Levin’s argument
works under more general assumptions:

Definition
(B., Porter)
Let P be a Π0

1 class. Let Pn be a set of finite strings of length n which can be
extended to an element of P . We say that P is deep if

M(Pn) ≤
1

h(n)

for some computable h which tends to infinity.

Definition
(B., Porter)
Let P be a Π0

1 class. Let Pn be a set of finite strings of length n which can be
extended to an element of P . We say that P is deep if

M(Pn) ≤
1

h(n)

for some computable h which tends to infinity.

14/39



Deep classes (2)

It turns out that there many Π0
1 classes studied in the literature are deep.

Theorem
(B., Porter)
The following Π0

1 classes are deep:

• Levin complex sequences: binary sequences such that
K(Xn...Xn+k) ≥ 0.9 k for all n and all k ≥ c (after
Rumyantsev, Khan).

• DNCq, with
∏

n(1 − 1/q(n)) = 0: functions f : N → N such that
f(e) ̸= ϕe(e) and f(e) ≤ q(e) (after
Miller).

• Sequences of sets (F0, F1, ...) where Fi is a finite set of strings of length i,
and card(Fi) ≥ f(i) for some computable non-decreasing f tending to ∞.

• ...

Theorem
(B., Porter)
The following Π0

1 classes are deep:

• Levin complex sequences: binary sequences such that
K(Xn...Xn+k) ≥ 0.9 k for all n and all k ≥ c (after
Rumyantsev, Khan).

• DNCq, with
∏

n(1 − 1/q(n)) = 0: functions f : N → N such that
f(e) ̸= ϕe(e) and f(e) ≤ q(e) (after
Miller).

• Sequences of sets (F0, F1, ...) where Fi is a finite set of strings of length i,
and card(Fi) ≥ f(i) for some computable non-decreasing f tending to ∞.

• ...

15/39



Deep classes (2)

It turns out that there many Π0
1 classes studied in the literature are deep.

Theorem
(B., Porter)
The following Π0

1 classes are deep:

• Levin complex sequences: binary sequences such that
K(Xn...Xn+k) ≥ 0.9 k for all n and all k ≥ c (after
Rumyantsev, Khan).

• DNCq, with
∏

n(1 − 1/q(n)) = 0: functions f : N → N such that
f(e) ̸= ϕe(e) and f(e) ≤ q(e) (after
Miller).

• Sequences of sets (F0, F1, ...) where Fi is a finite set of strings of length i,
and card(Fi) ≥ f(i) for some computable non-decreasing f tending to ∞.

• ...

Theorem
(B., Porter)
The following Π0

1 classes are deep:

• Levin complex sequences: binary sequences such that
K(Xn...Xn+k) ≥ 0.9 k for all n and all k ≥ c (after
Rumyantsev, Khan).

• DNCq, with
∏

n(1 − 1/q(n)) = 0: functions f : N → N such that
f(e) ̸= ϕe(e) and f(e) ≤ q(e) (after
Miller).

• Sequences of sets (F0, F1, ...) where Fi is a finite set of strings of length i,
and card(Fi) ≥ f(i) for some computable non-decreasing f tending to ∞.

• ...

15/39



Deep classes (3)

The interesting thing is that even when the corresponding mass problem is easier
than PA, a deep Π0

1 class ‘behaves like PA’ in its interactions with
randomness. For example:

Theorem
(B., Porter)
• If R is Martin-Löf random and does not compute ∅ ′, then R does not

compute any element of a deep Π0
1 class (Stephan for PA).

• This remains true for R⊕ A, when A is K-trivial (Miller-Day for PA).

Theorem
(B., Porter)
• If R is Martin-Löf random and does not compute ∅ ′, then R does not

compute any element of a deep Π0
1 class (Stephan for PA).

• This remains true for R⊕ A, when A is K-trivial (Miller-Day for PA).

16/39



Why ‘deep’? (1)

Deep classes were named this way as their elements seem highly ‘structured’,
neither
too
simple
nor
obtainable
‘by
chance’.

This relates to an old idea due to Bennett, who argued that Kolmogorov
complexity captures the idea of ‘information’, but not of ‘depth’.

17/39



Why ‘deep’? (1)

Deep classes were named this way as their elements seem highly ‘structured’,
neither
too
simple
nor
obtainable
‘by
chance’.

This relates to an old idea due to Bennett, who argued that Kolmogorov
complexity captures the idea of ‘information’, but not of ‘depth’.

17/39



Why ‘deep’? (2)

shallow: too
simple!

18/39



Why ‘deep’? (2)

shallow: too
simple!

18/39



Why ‘deep’? (3)

shallow: too
random!

19/39



Why ‘deep’? (3)

shallow: too
random!

19/39



Why ‘deep’? (4)

non-random
/
compressible... but
deep!

20/39



Why ‘deep’? (4)

non-random
/
compressible...

but
deep!

20/39



Why ‘deep’? (4)

non-random
/
compressible... but
deep!

20/39



Logical depth

Bennett’s idea: what
constitutes
depth
is
not
how
simple
an
object
is
to
describe, it
is
how
long
it
takes
us
to
build
the
object
from
its
shortest
description.

In other words, its Kolmogorov complexity is much smaller than its
time-bounded Kolmogorov complexity.

Definition
(after
Bennett
1988)
An infinite binary sequence X is logically
deep if for every computable time bound
(function) T,

KT(X0...Xn) −K(X0...Xn) → ∞
Definition
(after
Bennett
1988)
An infinite binary sequence X is logically
deep if for every computable time bound
(function) T,

KT(X0...Xn) −K(X0...Xn) → ∞

21/39



Logical depth

Bennett’s idea: what
constitutes
depth
is
not
how
simple
an
object
is
to
describe, it
is
how
long
it
takes
us
to
build
the
object
from
its
shortest
description.

In other words, its Kolmogorov complexity is much smaller than its
time-bounded Kolmogorov complexity.

Definition
(after
Bennett
1988)
An infinite binary sequence X is logically
deep if for every computable time bound
(function) T,

KT(X0...Xn) −K(X0...Xn) → ∞
Definition
(after
Bennett
1988)
An infinite binary sequence X is logically
deep if for every computable time bound
(function) T,

KT(X0...Xn) −K(X0...Xn) → ∞

21/39



Logical depth

Bennett’s idea: what
constitutes
depth
is
not
how
simple
an
object
is
to
describe, it
is
how
long
it
takes
us
to
build
the
object
from
its
shortest
description.

In other words, its Kolmogorov complexity is much smaller than its
time-bounded Kolmogorov complexity.

Definition
(after
Bennett
1988)
An infinite binary sequence X is logically
deep if for every computable time bound
(function) T,

KT(X0...Xn) −K(X0...Xn) → ∞
Definition
(after
Bennett
1988)
An infinite binary sequence X is logically
deep if for every computable time bound
(function) T,

KT(X0...Xn) −K(X0...Xn) → ∞

21/39



Logical depth

It turned out that the connection between deep classes and logical depth is
more than a mere analogy!

Theorem
(B., Porter)
Every member of a deep Π0

1 class is logically deep.
Theorem
(B., Porter)
Every member of a deep Π0

1 class is logically deep.

(It is not true however that a Π0
1 class whose members are all logically deep must

be deep).

22/39



Logical depth

It turned out that the connection between deep classes and logical depth is
more than a mere analogy!

Theorem
(B., Porter)
Every member of a deep Π0

1 class is logically deep.
Theorem
(B., Porter)
Every member of a deep Π0

1 class is logically deep.

(It is not true however that a Π0
1 class whose members are all logically deep must

be deep).

22/39



Logical depth

It turned out that the connection between deep classes and logical depth is
more than a mere analogy!

Theorem
(B., Porter)
Every member of a deep Π0

1 class is logically deep.
Theorem
(B., Porter)
Every member of a deep Π0

1 class is logically deep.

(It is not true however that a Π0
1 class whose members are all logically deep must

be deep).

22/39



3. When randomness helps



Getting a hyperimmune function ‘at random’ (1)

We come back to the mass problem

HI: functions f : N → N which are dominated by no computable function (for
every g computable, g(n) ≤ f(n) for infinitely many n).

This one does admit a probabilistic algorithm, due to Kautz (1991), and clarified
by Gács and Shen (2012).

24/39



Getting a hyperimmune function ‘at random’ (1)

We come back to the mass problem

HI: functions f : N → N which are dominated by no computable function (for
every g computable, g(n) ≤ f(n) for infinitely many n).

This one does admit a probabilistic algorithm, due to Kautz (1991), and clarified
by Gács and Shen (2012).

24/39



Getting a hyperimmune function ‘at random’ (2)

We try to build a function f : N → N not dominated by any total ϕe for any e.

For a given e, let us pick an n,

• Case 1: If ϕe(n) is undefined, we have nothing to do! (for this e)

• Case 2: If ϕe(n) is defined, all we need to do is set f(n) = ϕe(n) + 1

In both cases we have a very simple way to satisfy the requirement computably.
But it is the distinction between the two cases which is not computable!

However, there is a probabilistic way to do this, via a fireworks
argument.

25/39



Getting a hyperimmune function ‘at random’ (2)

We try to build a function f : N → N not dominated by any total ϕe for any e.

For a given e, let us pick an n,

• Case 1: If ϕe(n) is undefined, we have nothing to do! (for this e)

• Case 2: If ϕe(n) is defined, all we need to do is set f(n) = ϕe(n) + 1

In both cases we have a very simple way to satisfy the requirement computably.
But it is the distinction between the two cases which is not computable!

However, there is a probabilistic way to do this, via a fireworks
argument.

25/39



Getting a hyperimmune function ‘at random’ (2)

We try to build a function f : N → N not dominated by any total ϕe for any e.

For a given e, let us pick an n,

• Case 1: If ϕe(n) is undefined, we have nothing to do! (for this e)

• Case 2: If ϕe(n) is defined, all we need to do is set f(n) = ϕe(n) + 1

In both cases we have a very simple way to satisfy the requirement computably.
But it is the distinction between the two cases which is not computable!

However, there is a probabilistic way to do this, via a fireworks
argument.

25/39



Getting a hyperimmune function ‘at random’ (2)

We try to build a function f : N → N not dominated by any total ϕe for any e.

For a given e, let us pick an n,

• Case 1: If ϕe(n) is undefined, we have nothing to do! (for this e)

• Case 2: If ϕe(n) is defined, all we need to do is set f(n) = ϕe(n) + 1

In both cases we have a very simple way to satisfy the requirement computably.
But it is the distinction between the two cases which is not computable!

However, there is a probabilistic way to do this, via a fireworks
argument.

25/39



Getting a hyperimmune function ‘at random’ (2)

We try to build a function f : N → N not dominated by any total ϕe for any e.

For a given e, let us pick an n,

• Case 1: If ϕe(n) is undefined, we have nothing to do! (for this e)

• Case 2: If ϕe(n) is defined, all we need to do is set f(n) = ϕe(n) + 1

In both cases we have a very simple way to satisfy the requirement computably.
But it is the distinction between the two cases which is not computable!

However, there is a probabilistic way to do this, via a fireworks
argument.

25/39



Getting a hyperimmune function ‘at random’ (2)

We try to build a function f : N → N not dominated by any total ϕe for any e.

For a given e, let us pick an n,

• Case 1: If ϕe(n) is undefined, we have nothing to do! (for this e)

• Case 2: If ϕe(n) is defined, all we need to do is set f(n) = ϕe(n) + 1

In both cases we have a very simple way to satisfy the requirement computably.
But it is the distinction between the two cases which is not computable!

However, there is a probabilistic way to do this, via a fireworks
argument.

25/39



Fireworks (1)

Suppose we walk into a fireworks shop.

• The fireworks sold there are very cheap so we are suspicious that some of
them are defective.

• Since they are cheap we can ask the owner to test a few of them before
buying one.

• Our
goal: either
buy
a
good
one
(untested)
and
take
it
home OR get
the
owner
to
fail
a
test, and
then
sue
him.

26/39



Fireworks (2)

Clearly there is no deterministic strategy which works in all cases. There is
however a good probabilistic strategy, which wins with probability at least
n/(n+ 1) in all cases, where n is the number of fireworks boxes in the shop:

• Pick a number k at random between 0 and n

• Test the k first fireworks

• Buy the (k+ 1)-st box (unless k = n)

This
works
because
the
only
bad
case
is
when k+ 1 is
the
position
of
the
first
bad
box.

27/39



Fireworks (2)

Clearly there is no deterministic strategy which works in all cases. There is
however a good probabilistic strategy, which wins with probability at least
n/(n+ 1) in all cases, where n is the number of fireworks boxes in the shop:

• Pick a number k at random between 0 and n

• Test the k first fireworks

• Buy the (k+ 1)-st box (unless k = n)

This
works
because
the
only
bad
case
is
when k+ 1 is
the
position
of
the
first
bad
box.

27/39



Fireworks (2)

Clearly there is no deterministic strategy which works in all cases. There is
however a good probabilistic strategy, which wins with probability at least
n/(n+ 1) in all cases, where n is the number of fireworks boxes in the shop:

• Pick a number k at random between 0 and n

• Test the k first fireworks

• Buy the (k+ 1)-st box (unless k = n)

This
works
because
the
only
bad
case
is
when k+ 1 is
the
position
of
the
first
bad
box.

27/39



Fireworks (3)

28/39



Fireworks (3)

28/39



Fireworks (3)

28/39



Fireworks (3)

28/39



Fireworks (3)

28/39



Fireworks (3)

28/39



Fireworks (4)

Back to our construction of f : N → N, where we want to satisfy for all e:

(Re): either ϕe is partial or ϕe does not dominate f.

The algorithm for a requirement e:

Step 1 Pick a number ke between 1 and q(e) at random, with∏
e(1 − 1/q(e)) > 0. Set the ‘error counter’ to 0

Step 2 ▶ Pick the smallest n on which f has not yet been defined.
▶ Set f(n) = 0 (here we are ‘guessing’ that ϕe(n) is undefined)
▶ Start handling other requirements until we see that ϕe(n) is in fact defined,

then increase the error counter by 1
▶ If the error counter is < ke, go back to the beginning of Step 2; if it is = ke,

go to Step 3.

Step 3 Pick a fresh m, and define f(m) = ϕe(m)

29/39



Fireworks (4)

Back to our construction of f : N → N, where we want to satisfy for all e:

(Re): either ϕe is partial or ϕe does not dominate f.

The algorithm for a requirement e:

Step 1 Pick a number ke between 1 and q(e) at random, with∏
e(1 − 1/q(e)) > 0. Set the ‘error counter’ to 0

Step 2 ▶ Pick the smallest n on which f has not yet been defined.
▶ Set f(n) = 0 (here we are ‘guessing’ that ϕe(n) is undefined)
▶ Start handling other requirements until we see that ϕe(n) is in fact defined,

then increase the error counter by 1
▶ If the error counter is < ke, go back to the beginning of Step 2; if it is = ke,

go to Step 3.

Step 3 Pick a fresh m, and define f(m) = ϕe(m)

29/39



Fireworks (4)

Back to our construction of f : N → N, where we want to satisfy for all e:

(Re): either ϕe is partial or ϕe does not dominate f.

The algorithm for a requirement e:

Step 1 Pick a number ke between 1 and q(e) at random, with∏
e(1 − 1/q(e)) > 0. Set the ‘error counter’ to 0

Step 2 ▶ Pick the smallest n on which f has not yet been defined.
▶ Set f(n) = 0 (here we are ‘guessing’ that ϕe(n) is undefined)
▶ Start handling other requirements until we see that ϕe(n) is in fact defined,

then increase the error counter by 1
▶ If the error counter is < ke, go back to the beginning of Step 2; if it is = ke,

go to Step 3.

Step 3 Pick a fresh m, and define f(m) = ϕe(m)

29/39



Fireworks (4)

Back to our construction of f : N → N, where we want to satisfy for all e:

(Re): either ϕe is partial or ϕe does not dominate f.

The algorithm for a requirement e:

Step 1 Pick a number ke between 1 and q(e) at random, with∏
e(1 − 1/q(e)) > 0. Set the ‘error counter’ to 0

Step 2 ▶ Pick the smallest n on which f has not yet been defined.
▶ Set f(n) = 0 (here we are ‘guessing’ that ϕe(n) is undefined)
▶ Start handling other requirements until we see that ϕe(n) is in fact defined,

then increase the error counter by 1
▶ If the error counter is < ke, go back to the beginning of Step 2; if it is = ke,

go to Step 3.

Step 3 Pick a fresh m, and define f(m) = ϕe(m)

29/39



Fireworks (4)

Back to our construction of f : N → N, where we want to satisfy for all e:

(Re): either ϕe is partial or ϕe does not dominate f.

The algorithm for a requirement e:

Step 1 Pick a number ke between 1 and q(e) at random, with∏
e(1 − 1/q(e)) > 0. Set the ‘error counter’ to 0

Step 2 ▶ Pick the smallest n on which f has not yet been defined.
▶ Set f(n) = 0 (here we are ‘guessing’ that ϕe(n) is undefined)
▶ Start handling other requirements until we see that ϕe(n) is in fact defined,

then increase the error counter by 1
▶ If the error counter is < ke, go back to the beginning of Step 2; if it is = ke,

go to Step 3.

Step 3 Pick a fresh m, and define f(m) = ϕe(m)

29/39



Fireworks (5)

It is not too hard to argue that the algorithm succeeds with probability at least∏
e(1 − 1/q(e)).

Thus we have:

Theorem
(Kautz)
There isΦ such that

Pr[Φ(R) ∈HI] > 0

Theorem
(Kautz)
There isΦ such that

Pr[Φ(R) ∈HI] > 0

In fact, Kautz showed: Every
sequence
which
is
Martin-Löf
random
relative
to ∅ ′ computes
a
function
inHI.

30/39



Fireworks (5)

It is not too hard to argue that the algorithm succeeds with probability at least∏
e(1 − 1/q(e)).

Thus we have:

Theorem
(Kautz)
There isΦ such that

Pr[Φ(R) ∈HI] > 0

Theorem
(Kautz)
There isΦ such that

Pr[Φ(R) ∈HI] > 0

In fact, Kautz showed: Every
sequence
which
is
Martin-Löf
random
relative
to ∅ ′ computes
a
function
inHI.

30/39



Fireworks (5)

It is not too hard to argue that the algorithm succeeds with probability at least∏
e(1 − 1/q(e)).

Thus we have:

Theorem
(Kautz)
There isΦ such that

Pr[Φ(R) ∈HI] > 0

Theorem
(Kautz)
There isΦ such that

Pr[Φ(R) ∈HI] > 0

In fact, Kautz showed: Every
sequence
which
is
Martin-Löf
random
relative
to ∅ ′ computes
a
function
inHI.

30/39



Fireworks (6)

Using fireworks arguments, we can show that the following mass problems can
be solved probabilistically:

• Set of 1-generic binary sequences (Kautz)

• Set of pairs (A,B) such that B is c.e. relative to A, and B >T A (Kautz)

• Set of X which are inDNC but compute no Martin-Löf random sequence
(B.-Patey)

Question: are
there
other
types
of
non-trivial
probabilistic
algorithms
which
could
apply
to
computability
theory? (currently
no
other
known
type)

31/39



Fireworks (6)

Using fireworks arguments, we can show that the following mass problems can
be solved probabilistically:

• Set of 1-generic binary sequences (Kautz)

• Set of pairs (A,B) such that B is c.e. relative to A, and B >T A (Kautz)

• Set of X which are inDNC but compute no Martin-Löf random sequence
(B.-Patey)

Question: are
there
other
types
of
non-trivial
probabilistic
algorithms
which
could
apply
to
computability
theory? (currently
no
other
known
type)

31/39



Fireworks (6)

Using fireworks arguments, we can show that the following mass problems can
be solved probabilistically:

• Set of 1-generic binary sequences (Kautz)

• Set of pairs (A,B) such that B is c.e. relative to A, and B >T A (Kautz)

• Set of X which are inDNC but compute no Martin-Löf random sequence
(B.-Patey)

Question: are
there
other
types
of
non-trivial
probabilistic
algorithms
which
could
apply
to
computability
theory? (currently
no
other
known
type)

31/39



Fireworks (6)

Using fireworks arguments, we can show that the following mass problems can
be solved probabilistically:

• Set of 1-generic binary sequences (Kautz)

• Set of pairs (A,B) such that B is c.e. relative to A, and B >T A (Kautz)

• Set of X which are inDNC but compute no Martin-Löf random sequence
(B.-Patey)

Question: are
there
other
types
of
non-trivial
probabilistic
algorithms
which
could
apply
to
computability
theory? (currently
no
other
known
type)

31/39



Fireworks (6)

Using fireworks arguments, we can show that the following mass problems can
be solved probabilistically:

• Set of 1-generic binary sequences (Kautz)

• Set of pairs (A,B) such that B is c.e. relative to A, and B >T A (Kautz)

• Set of X which are inDNC but compute no Martin-Löf random sequence
(B.-Patey)

Question: are
there
other
types
of
non-trivial
probabilistic
algorithms
which
could
apply
to
computability
theory? (currently
no
other
known
type)

31/39



Turning De Leeuw et al’s theorem around
One last interesting aspect of randomized algorithms: showing computability!

Buffon’s needle shows that π is a computable number ;-)
(one can use the needle to get a probabilistic algorithm to compute π, thus by
De Leeuw et al’s theorem π is computable)

32/39



Turning De Leeuw et al’s theorem around
One last interesting aspect of randomized algorithms: showing computability!

Buffon’s needle shows that π is a computable number ;-)
(one can use the needle to get a probabilistic algorithm to compute π, thus by
De Leeuw et al’s theorem π is computable)

32/39



Dirichlet’s problem (1)

More interestingly, consider the computable version of Dirichlet’s
problem:

33/39



Dirichlet’s problem (1)

More interestingly, consider the computable version of Dirichlet’s
problem:

33/39



Dirichlet’s problem (1)

More interestingly, consider the computable version of Dirichlet’s
problem:

33/39



Dirichlet’s problem (2)

Under reasonable assumptions (U bounded, ∂U sufficiently smooth), there is
exactly one solution to Dirichlet’s problem.

Is
this
solution
computable? (=
when ∂U, φ are
computable, is f
computable?)

34/39



Dirichlet’s problem (2)

Under reasonable assumptions (U bounded, ∂U sufficiently smooth), there is
exactly one solution to Dirichlet’s problem.

Is
this
solution
computable? (=
when ∂U, φ are
computable, is f
computable?)

34/39



Dirichlet’s problem (3)
A fascinating result of random processes is that the unique solution can be found
via Brownian
motion.

35/39



Dirichlet’s problem (3)
A fascinating result of random processes is that the unique solution can be found
via Brownian
motion.

35/39



Dirichlet’s problem (3)
A fascinating result of random processes is that the unique solution can be found
via Brownian
motion.

35/39



Dirichlet’s problem (4)

Theorem
The function f : x 7→ E(φ(Hx)) is the unique solution to Dirichlet’s problem.
Theorem
The function f : x 7→ E(φ(Hx)) is the unique solution to Dirichlet’s problem.

In the computable setting:

Theorem
(Allen-B.-Slaman)
Given x and a random source R, one can compute a Brownian path starting
from x and compute its first intersection with ∂U.

Thus, we have a probabilistic algorithm to compute f(x) given x!

Thus f is
computable! (by De Leeuw et al’s theorem, essentially)

Theorem
(Allen-B.-Slaman)
Given x and a random source R, one can compute a Brownian path starting
from x and compute its first intersection with ∂U.

Thus, we have a probabilistic algorithm to compute f(x) given x!

Thus f is
computable! (by De Leeuw et al’s theorem, essentially)

36/39



Dirichlet’s problem (4)

Theorem
The function f : x 7→ E(φ(Hx)) is the unique solution to Dirichlet’s problem.
Theorem
The function f : x 7→ E(φ(Hx)) is the unique solution to Dirichlet’s problem.

In the computable setting:

Theorem
(Allen-B.-Slaman)
Given x and a random source R, one can compute a Brownian path starting
from x and compute its first intersection with ∂U.

Thus, we have a probabilistic algorithm to compute f(x) given x!

Thus f is
computable! (by De Leeuw et al’s theorem, essentially)

Theorem
(Allen-B.-Slaman)
Given x and a random source R, one can compute a Brownian path starting
from x and compute its first intersection with ∂U.

Thus, we have a probabilistic algorithm to compute f(x) given x!

Thus f is
computable! (by De Leeuw et al’s theorem, essentially)

36/39



Dirichlet’s problem (4)

Theorem
The function f : x 7→ E(φ(Hx)) is the unique solution to Dirichlet’s problem.
Theorem
The function f : x 7→ E(φ(Hx)) is the unique solution to Dirichlet’s problem.

In the computable setting:

Theorem
(Allen-B.-Slaman)
Given x and a random source R, one can compute a Brownian path starting
from x and compute its first intersection with ∂U.

Thus, we have a probabilistic algorithm to compute f(x) given x!

Thus f is
computable! (by De Leeuw et al’s theorem, essentially)

Theorem
(Allen-B.-Slaman)
Given x and a random source R, one can compute a Brownian path starting
from x and compute its first intersection with ∂U.

Thus, we have a probabilistic algorithm to compute f(x) given x!

Thus f is
computable! (by De Leeuw et al’s theorem, essentially)

36/39



In conclusion...

37/39



S. Barry Cooper (1943-2015)

38/39



Thank you, Barry !

39/39


	How useful is randomness?
	Randomness vs depth
	When randomness helps

