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Because this is the only setting that I know where
computable /recursive and decidable do not mean the same
thing, I want to start with clarifying:

A structure M is computable if it has domain (a computable
subset of) w and its atomic diagram is a computable set (in
particular, we assume the language is computable as well).
Example: (N,+,-)

A structure M is decidable if it has domain (a computable
subset of) w and its elementary diagram is a computable set.
Example: (Q, <).




Scott Sets

We will use countable Scott sets constantly in this talk.

Definition
A Scott set S is a nonempty subset of P(w) with the following
properties:

oelf XcSandY <y XthenY €S8

o If X,Y,e Sthen XY €8.

o If T'C 2<% is infinite and T' <7 X € S, then there is some
Y € S which is a path through 7'

Definition
E C w is an enumeration of the Scott set S if {E; |i e w} =S8
where E; = {j | (i,j) € E}.

For any X in a Scott set S, thereisa ¥ >7 X in S.
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My favorite theorem

Definition

FE is an effective enumeration of the Scott set S if E is an
enumeration of § and there are computable functions witnessing
the closure properties of the Scott set. i.e. There is a
computable function f(7,7) so that if 7' is an infinite tree in 2<%
and T' = ¢;(Ej), then Ey(; ;) is a path through 7.

One of my main goals of this talk is to highlight this theorem:

Theorem (Marker, '83)

If X computes an enumeration of the Scott set S, then X also
computes an effective enumeration of the Scott set S.

Effectivity for free! This is a statement that no computability
theorist believes at first sight. After all, how could I possibly
know which of the infinitely many columns is a path through 77



Coded reals in models of PA

If a € M = PA, then r(a) = {n | the n'® prime divides a}.
If M = PA, we let SS(M) = {r(a) | a € M}.

Theorem (Scott-Tennenbaum)

If M is a nonstandard model of PA, then SS(M) is a Scott set.

Proof.

Let T be an infinite tree coded by r(a). That is, o € T if and
only if p,|a (the oth prime). Then consider the set of n so that
{0 | ps|a} defines a tree up to length n and there is a string o,
of length n coded by some number b so that p,, |a. This is a
definable set and includes every standard integer. By
overspill/induction, there is a nonstandard integer in this

set. [
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M computes an enumeration of SS(M)

Theorem (Tennenbaum)

There is no computable nonstandard model of PA.

Proof.

Let M be a model of PA with universe w. Then we define

E ={(i,a) € w|pi|la}. Then E is computable in (the atomic
diagram of) M, but E is an enumeration of a Scott set, so it is
not computable. We call this £ the Standard Enumeration of
SS(M). O

| \

Theorem (Solovay)

If M is non-standard, then the Standard Enumeration of
SS(M) is M-effective. i.e., M can compute the functions
witnessing the closedness of the Scott set. So, M computes an
effective enumeration of SS(M).

The proof uses an awesome trick.
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AY-definable sets are computable in M

Let M be a model of PA. Let A be a AY-definable set. i.e A and
its complement are Y.{-definable. Then A is computable in M.

Proof.

The novel problem in this lemma is that Vz < v is not obviously
computable to check if v is a non-standard integer. In N,
bounded quantification is obviously computable: Just check the
finitely many cases needed. But here, there are infinitely many
T <.

Awesome Trick

Matiyasevich’s theorem shows that in any model of PA, any X!
set X is diophantine. That is, there is a polynomial p(z,7) so
that z € X if and only if there is a g so that p(z,y) = 0.

\

But the definition of a diophantine set has an existential
quantifier, but no bounded exponentiation. So it is r.e.

-




Proof of Solovay’s theorem

Proof.

Given a € M (where we think of a as coding the the tree T'),
there is some o € 2<M and v € M so that

(Vn <o) pojnla A
(V1 e 2‘“|+1)—|(Vn <|7]) Prmla A
(Vi <la|)(pilv < o(i) = 1)
Using the Lemma about AY definable sets, we see that it is

M-computable to verify that (o,v) is a witness. So, we
M-computably just output such a witness. O

V.

Note the overspill argument still appears here: There must be a
longest length of a p, so that all of its initial segments divides a
(by induction). This longest length cannot be finite.
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Models of PA are computably boundedly saturated

Theorem (Friedman)

Let a € M |= PA. Let p(z,a) be a computable set of 3,
formulas which is consistent with M. Then p is realized in M.

Proof.

We use the ¥, satisfaction predicate Sat,,. Let {¢;(x,a) | i € w}
be a computable enumeration of p(z,a). Using the fact that
computable sets are representable in PA, there is a formula

W(a, w) := Satn( /\ @i(w)).

i<a

| A

Then, since p(c, a) is consistent, for every n € w,
M = Jwip(n,w). By overspill, we get a w satisfying all of
p(w,a). O

\
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Some coded sets

If M = PA is non-standard, then for each n € w,
Th(M)N %, € SS(M).

| N

Proof.
Consider the partial type p(z) := {p;|z <> Sat, (i) | i € w}. By
the saturation, p is realized. O

V.

Corollary (Feferman)

If M = N is nonstandard, then M computes every arithmetical
set.
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S-saturation

Let S C P(w). M is S-saturated if
e Every type p(Z) realized in M is computable in some
X eS.
o If p(z,y) is a type computable in some X € S and a € M is
so that p(Z,a) is consistent, then p is realized in M.

<

Usually model-theorists consider full saturation, i.e., S = P(w).

If S is a countable Scott set and 7' is a complete theory in S,
then T" has a countable S-saturated model. If M and N are
both countable S-saturated models of T, then M = N.
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How computable is an S-saturated model?

Theorem (Marker, using Goncharov and Peretyat’kin)

If M is S-saturated and F is an enumeration of S, then there is
a copy of M whose elementary diagram is computable in E (i.e.
M is E-decidable).

This uses the following result of Goncharov and Peretyat’kin:

Theorem (Goncharov and Peretyat’kin, 78)

Let A be w-homogeneous. Let E be a d-enumeration of the
types realized in A. Suppose further that £ has the d-effective
extension property. Then there is a copy of A which is
d-decidable.

Definition

An enumeration F of types has the d-effective extension
property if there is a d-computable function g(i, j) so that if
p(Z) = E; and ¢(7,y) = Ej is consistent with p, then Ey; ;) is a
type containing p and ¢.

| A
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The implication

Given a type p(Z) and a formula ¢(Z,y) it is computable in the
enumeration of the T-types in S to produce a type containing
both. The only difficulty is in finding an index for it. But we
can do this easily if we produce a new enumeration of the
T-types in S wherein we explicitly build many sets just to be
these “extension types”. Then, since § is closed under Turing
reduction (since it is a Scott set), we have that this is also an
enumeration of the T-types in S.

So, starting with a d-computable enumeration of S, we produce
a d-computable enumeration of the T-types in & and then a
second d-computable enumeration of the T-types in & with the
d-effective extension property, then apply

Goncharov /Peretyat’kin.
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My favorite theorem - reminder slide

One of my main goals of this talk is to highlight this theorem.

Definition

FE is an effective enumeration of the Scott set S if E is an
enumeration of & and there are computable functions witnessing
the closure properties of the Scott set. i.e. There is a
computable function f(7,7) so that if T' is an infinite tree in 2<%
and T = ¢;(Ej), then Ey(; ;) is a path through T

Theorem (Marker, '83)

If X computes an enumeration of the Scott set S, then X also
computes an effective enumeration of the Scott set S.

Effectivity for free! This is a statement that no computability
theorist believes at first sight. After all, how could I possibly
know which of the infinitely many columns is a path through 77
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Marker’s proof

Proof.

Let E be the X-computable enumeration of S. There is some
completion T of PA contained in S. Then X also computes (by
the last theorem) the elementary diagram of an S-saturated
model M of T

Now, let R = SS(M). This R is an X-effective enumeration of a
Scott set. We now only need:

If M is an S-saturated model of PA, then S = SS(M).

SS C S, since r(a) is computable in tp(a). S €SS, since for
any set A € S, we can cook up a type in S containing all the
formulae p;|z if and only if i € A. O




Some general comments

Marker’s theorem does not mention PA or model theory, yet the
only known proof involves specifically looking at models of PA
and looking at S-saturated models.

It would be fascinating to see if there were a purely
computability-theoretic proof. If so, what serves the role of
homogeneity /saturation?

It follows from results of Lachlan and Soare that there is an
enumeration X of a jump ideal S so that X does not compute
any enumeration of § which can find jumps effectively. So, this
property of “free” uniformity is unique for finding paths through
trees.
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Post-Talk added Slide: Uniformity in Marker’s Result

Many thanks to Arno Pauly for pointing this out.

Theorem

This can be made uniform. That is, there is a single Turing
reduction ¢ so that given any enumeration X of a Scott set S,
®(X) gives an effective enumeration of the Scott set S

Proof.

Start by guessing that the first column is a completion of PA
and begin the algorithm described in the above proof. If you
find that it is not, then just make all the columns you started be
codes for finite sets (put all 0’s in those columns from here on),
and move on to guessing that the second column is a completion
of PA. Eventually, you settle on a column that works and you
produce the effective enumeration of the Scott set. Note that
the first finitely many columns code finite sets, so in particular,
they do not code infinite trees, so we don’t need to find paths
through them.

17
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Solovay’s Theorem (context for Marker’s result)

Both of these results are unpublished, though Knight wrote a
wonderful expository paper “Irue approximations and models of
arithmetic” explaining the proofs.

Theorem (Solovay, '82 (unpublished))

A set X can compute a non-standard model of Th(N, +,-) if
and only if it can compute an effective enumeration of a Scott
set S which contains every arithmetical set.

Note that we gave one direction of the proof above, and the
other is another “worker” construction. For general T' D PA:

Theorem (Solovay, 91 (unpublished))

Fix T' D PA complete. A set X can compute a non-standard
model of T if and only if X computes an enumeration R of a
Scott set S so that T'N 3,, € S for each n and there are a
sequence of functions t,, uniformly AY(X) so that for all n,
limg t,,(s) is an R-index for 7'N 3,,, and for each s,

Rtn(s) cTnd,. o
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Solovay theories (named for a feature of the last theorem)

This is an interesting feature, from a computable model theory
perspective, of a theory:

—

Definition

A complete theory T is Solovay if T'N 3,, is uniformly %Y.

If T has a computable model, then 7" is a Solovay theory.
There are only countably many Solovay theories, since they are
all computable from 0).

So, in some sense, Solovay theories looks at first blush like a
rough analogue of “theory with a computable model”.
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How far are Solovay theories from having computable

models?

Inspired by Solovay’s work on models of PA, and working from
the basic premise that nothing is worse than arithmetic:

Theorem (A.-Knight, '13)

There is a complete Solovay theory 7' extending PA so that the
degrees which compute models of T" are precisely the degrees
which compute non-standard models of Th(N, +,-), i.e. those
which compute Scott sets containing every arithmetical set.

Conversely:

Theorem (Solovay /Knight and

A .-Cai-Diamondstone-Lempp-J.S.Miller (rediscovered))

If X computes an enumeration of a Scott set containing every
arithmetical set and T is a Solovay theory, then X computes a
model of T'.
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Again, the following slides...

were prepared for but were not covered during the Leeds
tutorial series. I recognize that I had over-prepared. If anybody
does in fact read the online version of these slides, I hope that
they can still be of some use.
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A general framework for these discussions

For a theory T, we say the degree spectrum of 7' is the set of
Turing degrees which compute models of 7.

We contrast this to the more commonly studied notion of the
degree spectrum of a structure:

Definition
For a structure M, we say the degree spectrum of M is the set
of Turing degrees which compute a copy of M.

Observation

For any theory T', Spec(T’) = U yr Spec(M)
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An aside: These are in fact different

Theorem (A.-J.S.Miller, ’15)

There are superstable theories so that Spec(T") is exactly the
PA-degrees, Spec(T) is exactly the degrees which compute
ML-random sets, and so that Spec(T’) is exactly the union of 2
upper cones of c.e. sets.

None of these are degree spectra of structures.

Also, none of these are degree spectra of atomic theories.

Theorem (A.-J.S.Miller, ’15)

The set of non-hyperarithmetical degrees is not the spectrum of
a theory.

Theorem (Greenberg-Montalban-Slaman, ’13)

The set of non-hyperarithmetical degrees is the spectrum of a
structure.
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Atomic (and even w-stable) theories also have new spectra

Theorem (A.-Knight, '13)

There is a completion of PA whose spectrum is exactly the
degrees which compute non-standard models of Th(N, +,-).
This set is not the spectrum of any structure.®

“In most of these results, the difficult part is showing the negative
direction.

Theorem (A.-Cai-Diamondstone-Lempp-J.S.Miller)

This spectrum is also not the spectrum of any w-stable theory

Theorem (A.-Cai-Diamondstone-Lempp-J.S.Miller)

There is a spectrum of an w-stable theory which is not the
spectrum of any structure.
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Some classes of theories reflected in degree spectra

Definition

Let P C Q be two classes of theories. We say the difference
between them is reflected in degree spectra if there is some
T € Q so that there is no 7" € P so that Spec(T”) = Spec(T).

Theorem (Summary of above)

The line between superstable and superstable atomic theories is
reflected in degree spectra. The line between superstable atomic
and w-stable theories are reflected in degree spectra.

| A\

Question

What other dividing lines in model theory are reflected in
degree spectra?

This is generally compelling because it asks something at the
core of computable model theory: What computability-theoretic

content is encoded in model theoretic properties?
25
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Thank you!
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