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Because this is the only setting that I know where
computable /recursive and decidable do not mean the same
thing, I want to start with clarifying:

A structure M is computable if it has domain (a computable
subset of) w and its atomic diagram is a computable set (in
particular, we assume the language is computable as well).
Example: (N,+,-)

A structure M is decidable if it has domain (a computable
subset of) w and its elementary diagram is a computable set.
Example: (Q, <).
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Recall: Strongly minimal theories

A first order theory T is strongly minimal if every definable
subset of every model is a finite or co-finite subset of the model.

e A regular acyclic graph with finite valence (say, the theory
of a Cayley graph of a finitely generated group);

@ A vector space (say, the theory of (Q,+));

o An algebraically closed field, (say, the theory of
((Cv +a ) 0, 1) )




Recall: Algebraic closure and independence

Definition

For elements a,b € M, we say b € acl(a) if there is a formula
o(z,7) so that ¢(M,a) is finite and M = ¢(b, a).
i.e., b is in a finite a-definable set.

Definition

A set S C M is independent if each x € S is not in acl(S \ {z}).

For any n, there is a unique type of an independent n-tuple. We
call this the generic n-type.




Recall: Dimension

Definition

o If M is a model, a maximal independent subset is called a
basis for M.

@ The dimension of a set X is the size of a maximal
independent subset.

In strongly minimal theories, the above are well-defined. That
is, if B and By are maximal independent subsets of X, then
|B1| = |Bal.

Recall: Dimensions characterize models.
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Recall: The Zilber trichotomy

Zilber conjectured that every strongly minimal theory was of
one of three types:

e Disintegrated (Essentially binary)
e Locally Modular (Essentially a quasi-vector space)

o Field-like (Essentially an algebraically closed field)

Theorem (Hrushovski 1991)

The Zilber trichotomy is false. There are Hrushovski
constructions which build non-trichotomous theories.

These structures are inherently combinatorial in nature, and
have no algebraic content.
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Recall: Questions

As a model theorist, the characterization of models by
dimension seems extremely clear. What questions would a
computability theorist ask here? And why?

Question

With such a clear understanding of how models work, what is
the connection between computing the theory and computing a
model? If I know the theory, can I put these ideas to work to
produce its models? If I can compute the models, can I
reconstruct the theory? And if one model is computable how
non-computable can the other models be?

| A

Question

Since all the models look the same, i.e., they are just closures of
different sized independent sets, is it true that if one model is
computable then other models are computable? If not, which
sets of models can be the set of computable models?
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Recall: More questions

Question

To each of the questions above, how does the geometry of the
theory (i.e., whether it falls into the Zilber trichotomy and if so,
under which category) affect the answer? Is everything as
computable as can be for disintegrated theories? Modular
theories?

| \

Question

If we restrict the language to a finite signature, does that
change anything?

\
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Recall: Relative Computability of Models vs. Theories

Theorem (Goncharov-Harizanov-Laskowski-Lempp-McCoy, '03)

If T is a disintegrated strongly minimal theory and M = T is
computable, then T" and thus every other model of T is
computable from 0”.

Theorem (A.-Medvedev, "14)

If T is a strongly minimal locally modular theory expanding a
group and M |= T is computable, then 7" and thus every other
model of T is computable from 0”.

Theorem (A., 2013)

There is a strongly minimal theory T so that 7' =7 0) and
every countable model of T" is computable.

So, there’s no hope for any similar argument to go through for
general strongly minimal theories.



Relative computability of models

Theorem (A.-Knight)

Given T any strongly minimal theory with a computable model.
If M =T, then M has a copy computable in 0".

The ideas for this theorem were informed to a great degree by
this theorem of Lerman-Schmerl and Knight:

Theorem (Lerman-Schmerl '79, Knight '94)

If T is an (arithmetical) Rg-categorical theory so that for all n,
TNdyyeis 291-1-1’ then T has a computable model.

The idea is based on a so-called pull-down lemma, and the
infinite worker versions there-of.
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Lerman-Schmerl’s Pull-down lemma

Lemma

If the n + 1-quantifier diagram of A = T is d’-computable and
T N 3,42 is ce. in d, then the n-quantifier diagram of some

B = A is d-computable.

Proof Sketch.

We do a finite-injury construction trying to build an
isomorphism from our B to the given A. We use the c.e. set

T N 3,42 to ask whether what we are doing are reasonable. For
every tuple a € A, A tells us (correctly) some n + 1-quantifier
formula which isolates its n 4+ 1-quantifier type. Why? Because
T is Ng-categorical, so there are only finitely many |Z|-types
total, so in particular only finitely many n + 1-quantifier

types. L]

| A

<

**Wave hands at how this proof is completed and how Knight
“inducts in reverse” on w
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Similarly, we have each “worker” 0™ building the n-quantifier
diagram of a model. But for us, we have to be more specific,
because no single formula will inform the worker below about
the type of this element. So, rather, the nth worker decides on a
pair (A(a), k) where 6(a) has Morley rank k£ and is of minimal
Morley rank/degree formula in the n-quantifier type of a. Once
the lower worker knows it, that determines the type.

A structure M is boundedly saturated if whenever p(z,7) is an
n-quantifier-type for some n and a € M is so p(x,a) is
consistent, then there is a realization of p in M.

Lemma (The Key Lemma)

Every model M of T is either boundedly saturated or not.

12

General structure of the proof, and one highlighted idea
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What does the Key Lemma buy us?

If M is boundedly saturated, this tells us that as we go about
guessing at the n-quantifier diagram of a copy of M, whatever
we build (consistent with 7") is “safe”, in that it exists
somewhere in M. This is reassuring as we go about the infinite
worker method necessary (with no top model).

The second case tells us that some n-quantifier type is omitted
over a tuple. But this must be the unique non-algebraic
n-quantifier type. Thus, for some n, every element is algebraic
over a fixed finite set via an n-quantifier formula. We can use
this to get ourselves a top model.

Both of these are very useful assumptions. I wonder whether
this dichotomy will appear more in the future.
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Some other results using pull-down lemmas

The following theorem uses 4 layers of a pull-down lemma:

Theorem (Downey-Jockusch '94, Thurber 95, Knight-Stob ’00)

If A is a boolean algebra with a low, presentation, then A has a
computable copy.

We do not know what happens at lows or higher.

Theorem (Marker-R.Miller)

Every low copy of M =DCF( has a computable copy.

Marker and Miller showed that lowy does not work.
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Questions (looking again)

As a model theorist, the characterization of models by
dimension seems extremely clear. What questions would a
computability theorist ask here? And why?

Question

With such a clear understanding of how models work, what is
the connection between computing the theory and computing a
model? If I know the theory, can I put these ideas to work to
produce its models? If I can compute the models, can I
reconstruct the theory? And if one model is computable how
non-computable can the other models be?

| A

Question

Since all the models look the same, i.e., they are just closures of
different sized independent sets, is it true that if one model is
computable then other models are computable? If not, which
sets of models can be the set of computable models?
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Spectrum problem

It follows from the Baldwin-Lachlan theorem that the countable
models form an w + 1-chain: My < M; < ... < M,.

For a strongly minimal theory 7', we let SRM(T') = {« | M, is
computable}.

To formalize our question, we ask:

Question

Which sets S C w + 1 can be the Spectrum of Recursive Models
of a strongly minimal theory?
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All known Examples of Spectra

Answer

The following sets are known to be spectra:

@ No models.

o All models.

e {0} (Goncharov 1978)

e [0,n] (Kudaibergenov 1980)

e [0,w) (Khoussainov, Nies, Shore 1997)

o [1,w] (Khoussainov, Nies, Shore 1997)

o {1} (Nies 1999)

e [1,2,...,n] (Nies, Hirschfeldt unpublished)
o [1,w) (Nies, Hirschfeldt unpublished)

o {w} (Hirschfeldt, Khoussainov, Semukhin, 2006)
e {0,w} (A.2011)

e [0,n] U{w} (A.-Lempp)

e Any interval (A.)
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Upper bound

The only known upper bound for possible spectra is:

Theorem (Nies)

Every spectrum is ¥, 4.

Proof.
Suppose T' has a computable model (if not, §) is X2 +3), 50 T and

the generic n-type is <7 0 for each n. Then n € SRM(T) iff
3 comp A3 ... ¢y € A(A = pn(e) & V(B¢ ¢ prin)A F p(c,d) |0

v

| \

This is a big gap, and we seem to be at a loss to provide any
better bounds, and new examples are coming quite slowly.
Perhaps we can hope for better results for trichotomous theories.

Question

If T is trichotomous, can we use our understanding of the
geometry to say something about the spectra?
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Regarding disintegrated theories

Theorem (Goncharov-Harizanov-Laskowski-Lempp-McCoy, ’03)

If T is disintegrated then SRM(T) is X9.

Theorem (A.-Medvedev, ’14)

If T is disintegrated strongly minimal with a finite signature,
then SRM(T") = 0, [0,w], or {0}.

Proof.

Step 1: There is a theory 7" which is bi-interpretable with T
where every relation symbol in the language of 1" has rank 1.
Step 2: Algebraic closure in 7’ can be understood in terms of an
easily defined graph relation using these relation symbols.

Step 3: In T”, we can use this direct understanding to show
SRM(T") = 0, [0,w], or {0}.

Step 4: Every definable set in a computable disintegrated

strongly minimal structure is computable (by GHLLM), so
SRM(T") = SRM(T"). (Note this is non-uniform.) 0.




The following were...

prepared slides that I did not get to cover during the tutorial
series. Since I had these slides prepared (except for this one,
obviously), I decided to leave them in for the online version.

In several places, I had intended to draw pictures and give
further explanations, but I hope these slides will be of some
value anyway.
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Disintegrated theories in general

Theorem (A.-Lempp)

The following are exactly the spectra of disintegrated strongly
minimal theories with languages are comprised of rank 1 relation

symbols: 0, [0,w], [1,w], {1}, {w}, [0,n], [0,n] U{w}, {1,w}"

%This last one still requires some checking. The main thrust here is that
no other set can be such a spectrum

I, perhaps foolishly, believed that if we understood the case for
rank 1 languages, and we could understand general ternary
languages, then we ought to be able to extend beyond that.

Theorem (A.-Lempp)

There are between 9 and 18 sets which are spectra of strongly
minimal disintegrated theories whose languages are comprised of
ternary relation symbols.

Despite having mostly figured out the ternary and rank 1 cases,

we do not yet know how to attack the general case. o1 oo



The case of modular groups

We first answer the question for the finite language case.

Theorem (A.-Medvedev, "14)

If T is a strongly minimal locally modular expansion of a group
with a finite signature, then SRM(T') = {), [0, w] or {0}.

Warning: The next slide is going to say how you can find the
quasi-vector space structure of the strongly minimal modular
group. Dear non-model-theorist friends, please do not get
traumatized; the following slides will be friendly again.
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Understanding the interplay here: Quasiendomorphisms

e Let (G,+,...) be a strongly minimal modular group.
e Then Gy = aclg() is a subgroup of G.

e Let @ be the collection of acl(f))-definable Rank 1
subgroups K < G x G with projection 71 : K — G onto.

@ Define C' to be the collection of quasiendomorphisms of the
form G x F for a finite F < G.

e Then D = @Q/C forms a division ring and G/Gy is an
D-vector-space.

e In fact, G = G/Gy @ Gy.

Sadly, none of this sounds remotely computable. Why would D
be a computable division ring? Why would G be a computable
structure?
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Taming Quasiendomorphisms

Given G = (G, +, Ry, ..., R;,) a modular group, there is
G' = (G,+, Hy,...,Hy) where each H; is a quasiendomorphism
so that G’ is Aj-definable from G, and they have the same
quasi-endomorphism ring D and the same acl(()). (Note that we
don’t quite get bi-interpretability).

*Draw pictures for geometric idea of reductions™

In particular, we give an explicit syntactic translation between
any modular group and its presentation as a quasi-vector space
structure.

If (G,+, Hy,... Hy) is a positive-dimensional modular group
where each H; defines a quasiendomorphism, then the
quasiendomorphism ring D is recursively generated by the H;’s.
Since acl() = Ugec im(d), it is a 31 subset of the universe, thus

a recursive structure. 24/ 29



Putting it together

Theorem

If (G,+, Ry,...R,) is a recursive modular strongly minimal
group of positive dimension, then Gy and D are recursive.

| A

Corollary

If T is a stongly minimal theory of a modular group, then
SRM(T) =0,w+1, or {0}.

Proof.

If there is a model of positive dimension, then both Gy and D
are recursively presented. From a recursive presentation of D,
we can recursively present DF, the D-vector space of dimension

| \

k for any k.

Let G be a model of dimension k (k € w + 1), then
G=GydG/Gy=God DF. This gives a recursive presentation
of G. ]

25
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Infinite language modular groups

The infinite language case is still relatively unexplored. In this
case, the division ring is not necessarily finitely generated, and
many of our reductions require (/. The following is essentially
all we know:

Theorem (A.)

For any interval I C [0,w], there is a theory T" which is a
strongly minimal locally modular expansion of a group so that
SRM(T) = 1I.

If the quasiendomorphism ring is non-commutative or has
characteristic 0, then SRM(T') is computable (in fact,
SRM(T) N [1,w) is an initial segment of [1,w)).
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Index Sets

On the second slide of the last talk, I claimed that computability
theory has something to offer model theory in quantifying the
simplest characterizations of things. I had 2 particular theorems
in mind, though other examples are not hard to find:

Definition
For P a property of computable thingies?®, we define the index

set of P to be the set if i so that the i*® computable function is
a thingie with property P.

“thingies” could be theories, groups, structures, fields, etc. etc.

Theorem (A.-Makuluni, '13)

The Index set of Rj-categorical theories is ©9 A TI9, and it is
complete for this class.

In particular, “w-stable with no 2-cardinal formula” is distinctly
not the simplest characterization of Nj-categoricity, since
w-stability is IT1i-complete. 27 ) 29



A second example: VC-minimality

Definition

A theory T is VC-minimal if there is a set ¥ = {¢;(x,y) | i € I}
so that any two instances of formulas from ¥ are either nested
or disjoint and so that if A is a definable subset of M = T, then
A is a boolean combination of instances of formulas from W.

This is clearly >1. This definition seemed like it might be model
theoretically useful as a common generalization of o-minimality
and strong minimality, but it was incredibly difficult to work
with. Indeed, it took non-trivial effort to show that (Z,+, <) is
not VC-minimal.

Theorem (A.-Guingona, '16)

VC-minimality is I1}-complete. In particular, there is a “local”
characterization of VC-minimality for countable theories.
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Thank you!
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