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We are working with Grothendieck fibrations and comprehension
categories. Suppose we are given a functor p : E→ B.

Definition
A morphism f : X → Y in E is cartesian over u : I → J in B if
p(f ) = u and for every g : Z → Y for which there exists w with
p(g) = u ◦ w , there is a unique h : Z → X in E such that
p(h) = w and f ◦ h = g . In a diagram:
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For example, let B be any category, let E be B→, the category of
arrows over B, and let p be the codomain functor. Then cartesian
maps in B→ are precisely pullbacks:
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We think of objects of B as “contexts”, objects of E as “dependent
types”, and cartesian maps as “substitutions into types.”



Definition

1. A functor p : E→ B is a (Grothendieck) fibration if for every
u : I → J in B and object Y in E with p(Y ) = J, there exists
an object X of E and a cartesian morphism f : X → Y such
that p(f ) = u.

2. A cloven fibration is a functor p : E→ B together with a
choice of cartesian morphisms: for every u : I → J and Y
with p(Y ) = J, an object u∗(Y ) of E, and a cartesian
morphism u(Y ) (we refer to the extra data as a cleavage.

3. A split fibration is a cloven fibration, such that the cleavage
respects identities and composition:

3.1 For all I , id∗
I (Y ) = Y and idI = idY .

3.2 For all u : I → J and v : J → K and Y with p(Y ) = K ,
(v ◦ u)∗(Y ) = u∗(v∗Y ) and v ◦ u = v ◦ u.

Eg. cod : B→ → B is a fibration precisely if B has pullbacks.
We refer to B as the base category and E as the total category.



Example

Let B := Set. Let E := Fam(Set) be the category of families of
sets. That is, objects of Fam(Set) consist of a set I together with
a family of sets (Xi )i∈I . A morphism from (Xi )i∈I to (Yj)j∈J is a
function u : I → J, together with functions Xi → Yu(i) for each
i ∈ I .
The projection functor Fam(Set)→ Set is equivalent to the
codomain functor Set→ → Set.
There is a canonical splitting on Fam(Set) defined as follows. For
u : I → J, u∗((Yj)j∈J) is the family indexed by I defined below:

(u∗((Yj)j∈J))i := Yu(i)



Definition
An assembly consists of a set X together with a function
α : X → Pi (N) (where Pi (N) denotes inhabited subsets of N).

If (X , α) and (Y , β) are assemblies and g : X → Y is a function
and a ∈ N, we say f is tracked by a if for all x ∈ X , and all
b ∈ α(x), φa(b) is defined and belongs to β(g(x)).

Assemblies form a category Asm, where morphisms
(X , α)→ (Y , β) are functions f : X → Y such that there exists
a ∈ N that tracks f .



A uniform family consists of an assembly (I , β), together with a
family of assemblies (Xi , αi )i∈I . Uniform families form a category
UFam(Asm).

Projection UFam(Asm)→ Asm is a split fibration, which is
equivalent to the codomain fibration Asm→ → Asm (analogously
to Fam(Set)→ Set).



Definition (Jacobs)

A comprehension category consists of categories B and E together
with functors p and χ in the following commutative diagram, such
that p is a fibration and χ preserves cartesian maps.

E χ //

p
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cod}}
B

A comprehension category is full if χ is full and faithful.
A split comprehension category is a comprehension category
together with a splitting on p.

Basic idea: Objects I of B are contexts. The fibre p−1(I ) is
dependent types in context I . If I is an object of B and
X ∈ p−1(I ), we think of dom(χ(X )) as the new context resulting
from extending I with the dependent type X . Terms of type X are
sections of χ(X ). The splitting tells us how to substitute into
types.
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Aim: To produce a split CC based on cubical sets and the van den
Berg-Garner interpretation of type theory.

I Able to exploit abstract arguments from homotopical algebra.

I Reducing easily to an explicit definition.

I This explicit description should match Thierry Coquand’s CwF
on cubical sets.

I The same ideas should apply to both cubical sets and cubical
assemblies.

I Simple enough for me to understand.
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Given a split fibration, we can produce a new split fibration via the
following observation.

Definition
Let r : F→ E and p : E→ B. We say r lifts cartesian maps
uniquely if for object Z of F and every map f : X → r(Z ) in E
that is cartesian over p, there is a unique object X ′ of F and
morphism g ′ : X ′ → Z such that g is cartesian over p ◦ r .

Lemma
Suppose that we are given a splitting on p and r lifts cartesian
maps uniquely. Then the splitting on p lifts uniquely to a splitting
on p ◦ r .



Using a key idea from the van den Berg-Garner interpretation of
type theory, we get the following.

Lemma

1. Let p : E→ B be a functor, and let T : E→ E be an
endofunctor over p. Let T -Alg be the category of T -algebras,
and let r : T -Alg→ E be the forgetful functor. Then r lifts
cartesian maps uniquely.

2. If η is a unit making (T , η) a pointed endofunctor over p,
then the forgetful functor r : (T , η) -Alg→ E lifts cartesian
maps uniquely.

3. If µ is a unit making (T , η, µ) a monad over p, then the
forgetful functor r : (T , η, µ) -Alg→ E lifts cartesian maps
uniquely.

The same is true for coalgebras if we add the assumption that T
preserves cartesian maps.



Let B be a category. Every awfs gives us a monad R on B→. If we
are given a split CC and an awfs on the same category, B, we
combine them via pullback:

E×B→ R -Alg //
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R -Alg
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E χ //

p
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B→

cod{{
B

The property of lifting cartesian maps uniquely is preserved by
pullback along cartesian maps. So using the splitting on p, we
obtain a splitting on the composition E×B→ R -Alg→ B.
This gives us a new split CC with total category E×B→ R -Alg.

Applying this to Hofmann’s interpretation of extensional type
theory in cubical sets and suitable awfs’s gives us precisely the
CwFs defined by Coquand et al.
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Split CC for extensional type theory + awfs

↓

Split CC for intensional type theory



I For defining the split CC we don’t need all the structure of an
awfs. For this and some other things the weaker notion of left
algebraic weak factorisation system (lawfs) suffices.

I We can use strong coproducts in E and the structure of an
lawfs to implement Σ-types

I Under certain conditions Π-types and Id-types can also be
added.



Before we had an endofunctor on the total category. We can also
work with an endofunctor on the base category. This is done using
two pullbacks.

·

G ∗(E)
G∗(χ) //

$$
**

G ∗(B→)

yy ((
T -Alg

G
**

E

##

χ // B→

~~
B

First we base change along the forgetful functor G : T -Alg→ B.
It is well known that splitness is preserved by base changes.

Then we pullback along the functor T -Alg→ → G ∗(B→), which
lifts cartesian maps uniquely.
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Definition
Let C be a category. An internal category consists of

1. an object C0 (“the object of objects”)

2. an object C1 (“the object of morphisms”)

3. morphisms ∂0, ∂1 : C1 → C0 (“domain and codomain”)

4. a morphism i : C0 → C1 (“identity objects”)

5. a morphism m : C1×C0 C1 → C1 (“morphism of composition”)

6. satisying certain axioms (commutative diagrams
corresponding to associativity and identities)

Theorem (Bénabou and Roubaud, Beck)

Given a fibration p : E→ B with dependent coproducts and an
internal category C := (C0,C1, ∂0, ∂1, i ,m) in B, one can construct
a monad on EC0 whose algebras are internal presheaves over C.



We can recover a split CC corresponding to Hofmann’s
interpretation of extensional type theory in presheaves over a
category C as follows.

1. View C as an internal category in Set.

2. Fam(Set)C0 consists of families of sets indexed by C0, which
are just functions X from objects of C to Set.

3. Bénabou-Roubaud-Beck gives us a monad on Fam(Set)C0 . An
algebra structure on X : C0 → Set is precisely the extra
structure needed to make X into a functor C → Set.

4. We have a split fibration with base category Fam(Set)C0 .
Objects of the total category consist of pairs (X ,F ), with
X ∈ Fam(Set)C0 and F ∈ Fam(Set)dom(χ(X )).

5. Combining this split fibration with the monad gives us a new
split fibration. The fibre of the total category over X is
strictly isomorphic (not just equivalent) to the category
[
∫

X ,Set] (which is how dependent types are implemented in
presheaves).



Split CC for extensional type theory (eg families of sets, uniform
families of assemblies) + internal category

↓

New split CC for extensional type theory (eg cubical sets)



An internal category in the category of assemblies consists of:

1. An internal category (C0,C1, ∂0, ∂1, i ,m) in Set (ie a small
category).

2. Existence predicates E0 : C0 → Pi (N) and E1 : C1 → Pi (N).

3. ∂0, ∂1, i ,m are tracked functions.

By defining suitable internal categories and applying the internal
presheaf construction, we get

1. Stekelenburg’s definition of simplicial assembly

2. A notion of cubical assembly (with optional diagonals and
connections) corresponding to cubical sets

3. 01-substitution assemblies, corresponding to 01-substitution
sets

Each of these is the base category of a split CC.



The awfs’s on cubical sets and 01-substitution sets can be lifted to
cubical assemblies and 01-substitution assemblies by defining an
appropriate existence predicate.

If the existence predicate for the awfs (L,R) is defined
appropriately, then for an algebra structure Rf → f to be tracked
says precisely that one can compute the Kan filling operator.

(Recall that the algebra structures in cubical sets correspond
precisely to Kan filling operators.)

Unfolding the definitions easily yields an explicit description of a
split CC.
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Some miscellaneous remarks...

I I expect HoTT can be interpreted in cubical assemblies by
adapting existing work (Coquand et al, Pitts and Orton).

I Cubical assemblies are not toposes or even pretoposes and are
not complete, cocomplete or exact and have no subobject
classifiers. This is fine.

I We cannot apply the usual version of Garner’s small object
argument, but an “internal” version might work.

I Instead of assemblies one can use PERs, modest sets or
realizability toposes.

I Instead of constructing presheaves internally in assemblies, we
can construct assemblies internally in presheaf categories.
This might be useful for studying cubical type theory.


