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Forcing in a Nutshell

I Historically, forcing is a model transformation

I Several names for the same concept

Forcing translation ∼= Kripke models ∼= Presheaf construction
(Set theory) (Modal logic) (Category theory)

I Usually, set-theoretic forcing is classical

I We will study intuitionistic forcing, in intuitionistic type theory
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Forcing

Why use forcing?

I Set theory: a lot of independence results continuum
hypothesis, AC, . . .

I Modal logic and Kripke Models
I Category theory: a HoTT topic!

I Many models arise from presheaf constructions
I Coquand & al.’s cubical model of univalence is an example
I Also step-indexing, parametricity...
I But this targets sets or topoi usually

We want forcing in Type Theory!
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Intuitionistic Forcing in LJ (Kripke, presheaf)

Assume a preorder (P,≤). We summarize the forcing translation in
LJ.

I To a formula A, we associate a P-indexed formula [[A]]p.

I To a proof ` A, we associate a proof of ∀p : P, [[A]]p.

I (Target theory not really specified here, think λΠ.)

� P are possible worlds, [[A]]p is truth at world p �

Most notably,

[[A→ B]]p := ∀q ≤ p. [[A]]q → [[B]]q

Actually this can be adapted straightforwardly to any category
(P, Hom).
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Through the Curry-Howard Lens

The previous soundness theorem also makes sense in a
proof-relevant world:

If ` t : A then p : P ` [t]p : [[A]]p

... and the translation can be thought of as a monotonous monad
reader

Reader Forcing

T A := P→ A Tp A := ∀q : P, q ≤ p→ A

read : 1→ P read : 1→ P

enter : (1→ A)→ P→ A enter : (1→ A)→ ∀p : P, p ≤ read()→ A

In particular, taking (P,≤) to be a full preorder gives the reader
monad.
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Idea of the proof and use

I Substitution lemma for the interpretation.

I “Computational soundness”: t→β u⇒ [t] ≡β [u]

One can add “generic” elements in the forcing layer by inhabiting
their translations:

[`F a : ψ] , a• : ∀p : P, [[ψ]]p

Thanks to soundness of the translation, and (assumed) consistency
of the source system, as soon as P is inhabited:

`F t : ⊥ ⇒ p : P ` [t]p : [[⊥]]p ≡ Π q ≤ p.⊥
We have equiconsistency.
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Do it, or do not: there is no try

In 2012, we gave a forcing translation from CCω + Σ into itself.

Intuitively, not that difficult.

I To a type ` A : � associate p : P ` [[A]]p : �.

I To a term ` t : A associate p : P ` [t]p : [[A]]p by induction on
t

I To handle types-as-terms uniformly, [[·]] is defined through [·]
[A]p : (Πq ≤ p→ �). (A type)
[[A]]p := [A]p p idp

I Translation of the dependent arrow is almost the same:

[[Πx : A.B]]p ≡ Πq ≤ p.Πx : [[A]]q. [[B]]q

... except that we must add restrictions!
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To presheaves

We move to:

[A]p : Σf : (Πq ≤ p→ �). (A type)
{θ : Πq ≤ p.Πr ≤ q.f q → f r | (Θ restriction)
refl(θ, p) ∧ trans(θ, p)} (Θ functorial)

[[A]]p := (π1 [A]p) p idp

In general, under a context σ of variables + forcing conditions:

Var
wf(Γ) (x : T ) ∈ Γ

Γ ⊢ x : T

Ax
wf(Γ) (s1, s2) ∈ A

Γ ⊢ s1 : s2

Abstr
Γ, x : T ⊢M : U

Γ ⊢ λx : T.M : Πx : T.U

App
Γ ⊢M : Πx : T.U Γ ⊢ N : T

Γ ⊢MN : U {N/x}

Prod
Γ ⊢ T : s1 Γ, x : T ⊢ U : s2

Γ ⊢ Πx : T.U : max(s1, s2)

Sum
Γ ⊢ T : Typei Γ, x : T ⊢ U : Typei

Γ ⊢ Σx : T.U : Typei

Pair
Γ ⊢M : T Γ ⊢ N : U {M/x}

Γ ⊢ (M, N) : Σx : T.U

Proj-1
Γ ⊢M : Σx : T.U

Γ ⊢ π1M : T

Proj-2
Γ ⊢M : Σx : T.U

Γ ⊢ π2M : U {π1M/x}

Subset
Γ ⊢ T : s Γ, x : T ⊢ U : Prop

Γ ⊢ {x : T | U} : s

Subtype
Γ ⊢M : T Γ ⊢ T ≤ U

Γ ⊢M : U

Fig. 1. Russell’s Type System

B. Presheaf approximations as dependent sums

In category theory, a presheaf P over P on Set is given
by a family (Pp)p∈P of sets together with restriction maps

Pq
θp,q←−− Pp

for all q ! p, satisfying the usual commutative diagrams
ensuring the naturality of those maps. In the special
setting of a preorder, the naturality corresponds to the
reflexivity and transitivity of restriction maps.

In Russell, this restriction maps can be formalized using
a dependent sum and the naturality conditions can be
imposed using a subset type rejecting ill-formed restriction
maps. Thus, the type PSh(p, s) of a presheaf at level p on
a sort s can be defined as

Σf : Pp → s.{θ : Πq : Pp.Πr : Pq.fq → fr |
trans(θ, p) ∧ refl(θ, p)}

where trans(θ, p) and refl(θ, p) are defined in Figure 2.
Given a (closed) term T : s (where s ∈ S), we introduce

two notations to extract the support and the restriction
maps of the associated presheaf [T ]p:

!T "p
def
= (π1[T ]p)p

θT
p→q

def
= (π2[T ]p)pq

C. Presheaf approximation of variables

As we internalize the presheaf construction directly in
CoC, we have to translate variables of the calculus, which
is not the case for purely semantic definitions. The problem
with variables is that they can be used for a presheaf
approximation that is smaller than the presheaf approx-
imation for which they have been defined. For instance,
this situation typically amounts to derive the following
judgment, for q ! p,

Γ, x : !T "p ⊢ x : !T "q

which differs from the usual Var rule. This means that
the translation of a variable must introduce the right
restriction map to go from the presheaf approximation
at level p to the presheaf approximation at level q. To
that purpose, we need to parametrize the translation of a
term T with a map σ that associates the type and level
of approximation to every free variable occurring in T . In
what follow, σ denotes a function from variables to types
and forcing conditions. We note σ1(x) (resp. σ2(x)) for the
type (resp. forcing condition) assigned to x by σ. Given
a context Γ, we say that σ is a valid interpretation of
Γ if it assigns the same variable to the same type, and
all conditions appearing in σ are ordered. Given a valid
interpretation σ, the translation of a variable is given by

[x]σp
def
= θ

σ,σ1(x)
σ2(x)→px

and the translation of rule Var becomes

Γ, x : !T "σ
p ⊢ θσ,T

p→qx : !T "σ
q

which is now derivable from the rule Var and App.
Note that, inductively, the definitions of the support and
restriction maps of the presheaf approximation are also
annotated with the interpretation σ.

D. Presheaf approximation of dependent products

The category of presheaves is cartesian closed. This
suggests that dependent products can be translated as
presheaf approximations. In category theory, the internal
hom [−,−] is described by

[T, U ]p ∼= HomPSh(y(p)× T, U)

where y denotes the Yoneda embedding. This means that
[T, U ]p is itself a presheaf that associates to any forcing
condition q a morphism

fq : P(q, p)× Tq → Uq.

Now we have witnesses everywhere
... but it’s no longer computationally sound!
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Now we have witnesses everywhere
... but it’s no longer computationally sound!

8



Some proofs are more equal than others

The culprit is the conversion rule:

` t : A A ≡β B
` t : B

 p : P ` [t]p : [[A]]p [[A]]p ≡β [[B]]p

p : P ` [t]p : [[B]]p

In general, A ≡β B does not imply [[A]]p ≡β [[B]]p, as restrictions
do not commute/compose “on the nose”.

But in our case, P is a preorder so fq exists only when
q ! p. A dependent product will thus be translated at
level p as a family of dependent product indexed by forcing
conditions that are below p. As it is the case for morphisms
of presheaves, dependent functions between presheaf ap-
proximations also have to commute with restriction maps
as given by the following categorical commutative diagram

!T "σ
p

fp
!!

θσ,T
p→q

""

!U"σ
p

θσ,U
p→q

""

!T "σ
q

fq

!! !U"σ
q

(1)

To this end, the support of the presheaf approximation at
level p is given by the following subset type

!Πx : T.U"σ
p

def
= {f : Πq : PpΠx : !T "σ

q .!U"σ+(x,T,q)
q |

commΠ(f, T, U, p)}

where the first component is a family of dependent product
indexed by a forcing condition below p and where

commΠ(f, T, U, p)
def
= Πq : Pp.Πr : Pq.Πx : !T "σ

q .

(fr)(θσ,T
q→rx) = θ

σ+(x,T,q),U
q→r (fqx)

reflects the categorical commutative diagram (1). The
restriction maps are simply given by identity coercions

θσ,Πx:T.U
p→q

def
= λf : !Πx : T.U"σ

p .λr : Pq.fr

The translation of a function is given by

[λx : T.M ]σp
def
= λq : Pp.λx : !T "σ

q .[M ]
σ+(x,T,q)
q

The proof that [λx : T.M ]σp validates the commutation
condition is deduced from the set of equality on restriction
maps.

The translation of an application is obtained by ap-
plying the translated argument [N ]σp to the translated
function [M ]σp taken at level p,

[MN ]σp
def
= [M ]σp p [N ]σp .

E. Presheaf approximation of dependent sums and subset
types

The category of presheaves has products and coproducts
defined pointwise. This suggests that dependent sums can
be translated as presheaf approximation pointwisely, and
so for the associated operators.

!Σx : T.U"σ
p

def
= Σx : !T "σ

p .!U"σ+(x,T,p)
p

[(t, u)Σx:T.U ]σp
def
= ([t]σp , [u]σp )Σx:!T "σ

p .!U"σ
p

[πiM ]σp
def
= πi[M ]σp

The same pointwise construction works for subset types.

F. Presheaf approximation of sorts

CoC has a hierarchy of universes induced by the rule Ax.
This means that Prop and Typei have to be themselves
translated as presheaf approximation at level p. This is
done by defining a term PShC(p, s) that encodes the
restriction map available on PSh(p, s). Note that because
of proof irrelevance in our type system, the translation of
PSh(p, Prop) is simpler as restriction maps are in that
case proofs of monotonicity and thus, transitivity and
reflexivity of restriction maps are automatic (see Figure 2).

IV. The Forcing Translation

In this section, we present the formal definition of the
forcing translation, state its correctness and show how it
can generically be used to extend a type theory.

A. Definition

An interpretation σ is defined as a list of triples formed
by a variable, a type and a forcing condition. Given a
variable x appearing in σ, we note σ1(x) (resp. σ2(x)) the
type (resp. forcing condition) associated to x in σ.

σ is said to be a valid interpretation of a context

Γ = [(x1, T1), . . . (xn, Tn)]

if σ1(xi) = Ti for all 1 ≤ i ≤ n and the list of forcing con-
ditions appearing in σ is ordered: σ2(x1) " · · · " σ2(xn).
Thus, a valid interpretation σ gives rise to a sequence
p1 : P, p2 : Pp1

, . . . , pn : Ppn−1
of forcing conditions

appearing in σ (where pi = σ2(xi)).
Given a valid interpretation σ of Γ, we pose

!Γ"σ = p1 : P, x1 : !T1"σ
p1

, . . . , pn : Ppn−1
, xn : !Tn"σ

pn

Figure 2 presents the forcing translation of CoC. This
translation has largely been explained in Section III. The
only remaining point concerns the special translation for
the application and conversion rules, that have to be
enforced by some rewriting on restriction maps.

B. Ensuring conversion and substitution lemma on types

We can prove that !U {x/N}"σ
p is equal to

!U"σ+(x,T,p)
p

{
x/[N ]σp

}
, however they are not convertible,

due to the fact that properties like trans(θ, p) are
equalities which are not integrated in the conversion rule.

We do not work in an extentional theory: from the fact
that M is of type T and that T = U , we cannot deduce
that M is of type U . Indeed, T = U does not imply that
T ≃ U .

It is however possible to transform slightly the term
M so that it can be considered of type U . This method
can be seen as a way to transform an extentional theory
to an intentional one, as presented in [6], [12]. This is
done in Coq using the term eq rect, which corresponds
to the elimination of the equality type. Using this term
and equalities available on restriction maps, we are able
to define:

But in our case, P is a preorder so fq exists only when
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, however they are not convertible,

due to the fact that properties like trans(θ, p) are
equalities which are not integrated in the conversion rule.

We do not work in an extentional theory: from the fact
that M is of type T and that T = U , we cannot deduce
that M is of type U . Indeed, T = U does not imply that
T ≃ U .

It is however possible to transform slightly the term
M so that it can be considered of type U . This method
can be seen as a way to transform an extentional theory
to an intentional one, as presented in [6], [12]. This is
done in Coq using the term eq rect, which corresponds
to the elimination of the equality type. Using this term
and equalities available on restriction maps, we are able
to define:
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When conversion matters

We only recover that A ≡β B implies p : P ` [[A]]p =� [[B]]p.
In the end, you cannot interpret conversion by mere conversion.

` t : A A ≡β B
` t : B

 p : P ` [t]p : [[A]]p π : [[A]]p = [[B]]p

p : P ` transport([π],[t]p) : [[B]]p

The � diagram � does not commute in ITT

It raises a hell of coherence issues.

I Breaks computation

I Requires definitional UIP in the target (i.e. OTT or ETT)

I Requires that ≤ is proof-irrelevant.

I Only preorder-based presheaf models!
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Nonetheless

In a modified Coq with definitional proof-irrelevance (for Prop):

I We could adapt the proof of consistency of the negation of
the continuum hypothesis.

I We could internalize step indexing as a forcing layer (i.e. to
obtain a general fixpoint in type theory).
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Step-indexing as a forcing layer

Take P , N with the standard order relation.

I Define B�: �→ � the “later” modality on � in the forcing
layer.
By translation we must provide a witness of
Πq ≤ p.ΠT : [[�]]q, [[�]]q, which computes to the unit type
when q = 0 and the nth-approximation of T at n+ 1.

I Define fixT : (B� T → T )→ T (the Löb rule) by providing a
witness using the “step-index”.

I Define the lifting nextT : (T →B� T ), morally “delay”.

In the forcing layer, it becomes possible to reason with general
fixpoints on types having the unfolding lemma:

fix� f = f (next (fix� f))

.
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Issues

The setup is not very satisfactory though:

I Doubts about coherence of the whole translation.

I Tedious proofs involving rewriting appear when reasoning with
these fixpoints.

13



A new hope

Interestingly the Curry-Howard isomorphism explains the difficulties
with this translation.

Root of the failure

The usual forcing [·]p translation is call-by-value.

That is, assuming (P,≤) has definitional laws:

t ≡βv u implies [t]p ≡β [u]p

where βv is generated by the rule:

(λx. t)V −→βv t{x := V } (V a value)

This problem is already here in the simply-typed case but less
troublesome.
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The Two Sides of Forcing

There is an easy Call-by-Push-Value decomposition of forcing.

I Precomposing by the CBV decomposition we recover the
usual forcing

I Precomposing by the CBN decomposition we obtain a new
translation

I ... much closer to Krivine and Miquel’s classical variant

CBPVCBPVCBPV

CBVCBVCBV

CBNCBNCBN

λΠλΠλΠ
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CBN provides new abilities

You only have to change the interpretation of the arrow.

CBV [[Πx : A.B]]p ∼= Πq ≤ p.Πx : [[A]]q. [[B]]q

CBN [[Πx : A.B]]p ≡ Π(x : Πq ≤ p. [[A]]q). [[B]]p

CBN [[x]]p ≡ x p idp

... and everything follows naturally (CBN is somehow a � free

� construction).

Interpretation of CCω

Assuming that P has definitional laws (for identity and composi-
tion), then [·] provides a non-trivial translation from CCω into itself
preserving typing and conversion.

This is to the best of our knowledge, the first effectful translation
of CCω.
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The translation

the [�]n decomposition are of the form U X for some X , so that
we statically know we will only need the ✓UX function which is
defined regardless of X . Both properties make a perfect fit for an
interpretation of CIC.

3. Forcing Translation in the Negative Fragment
In this section, we first consider the forcing translation of CC! ,
a type theory featuring only negative connectives, i.e. ⇧-types. It
features a denumerable hierarchy of universes ⇤i together with an
impredicative universe ⇤, and is therefore essentially Luo’s ECC
without pairs nor cumulativity [11].

This translation builds upon the call-by-name forcing described
in the previous section. The main differences are that we handle
higher-order and dependency, as well as a presentation artifact
where we delay the whole-term lifting of the thunk translation
by using forcing contexts instead. Moreover, we now consider
categories of forcing conditions, rather than posets.

Definition 9 (Typing system). As usual, we define here two state-
ments mutually recursively. The statement ` � means that the envi-
ronment � is well-founded, while � ` M : A means that the term
M has type A in environment �. We write ⇤ for ⇤ or ⇤i for some
i 2 N. The typing rules are given at Figure 2.

Definition 10 (Forcing context). Forcing contexts � are given by
the following inductive grammar.

� ::= p | � · x | � · (q, f)

A forcing context � may be seen as a path from the initial
condition p to a current condition q. The forcing context � · (q, f)
extends the path � upto the new condition q through the path f
between p and q.

In the above definition, p, x, q and f are variables binding in the
right of the forcing context, and therefore forcing contexts obey the
usual freshness conditions obtained through ↵-equivalence.

We will often write � · ' to represent the forcing context �
extended with some forcing suffix 'made of any kind of extension.

Definition 11 (Forcing context validity). A forcing context � is
valid in a context �, written � ` �, whenever they pertain to the
following inductive relation.

· ` p

� ` �
� ` � · (q, f)

� ` �
�, x : A ` � · x

Definition 12 (Category). A category is given by:

• A term ` P : ⇤0 representing objects;
• A term ` Hom : P ! P ! ⇤0 representing morphisms;
• A term ` id : ⇧p : P. Hom p p representing identity;
• A term ` � : ⇧(p q r : P). Hom p q ! Hom q r ! Hom p r rep-

resenting composition.

For readability purposes, we write idp for id p, Hom(p, q) for
Hom p q and we consider the objects for the composition as implicit
and write f � g for � p q r f g for some objects p, q and r.

Furthermore, we require that we have the following definitional
equalities.

� ` f : Hom(p, q)

� ` idp � f ⌘ f

� ` f : Hom(p, q)

� ` f � idq ⌘ f

� ` f : Hom(p, q) � ` g : Hom(q, r) � ` h : Hom(r, s)

� ` f � (g � h) ⌘ (f � g) � h

Note that asking that they are given definitionally rather than as
mere propositional equalities is, as we will see in Section 4, actually
not restrictive.

Definition 13. The last condition �e from a forcing context � is a
variable defined inductively as follows.

pe := p (� · x)e := �e (� · (q, f))e := q

The morphism of a variable x in a forcing context �, written
�(x), is a term defined inductively as follows.

p(x) := idp (� · x)(x) := id�e

(� · y)(x) := �(x) (� · (q, f))(x) := �(x) � f

Notation 1. As it is a recurring pattern in the translation, we will
use the following macros.

�(q f : �). M := �(q : P) (f : Hom(�e, q)). M

⇧(q f : �). M := ⇧(q : P) (f : Hom(�e, q)). M

Definition 14 (Forcing translation). The forcing translation is in-
ductively defined on terms as follows.

[⇤]� := �(q f : �).⇧(r g : � · (q, f)). ⇤
[⇤i]� := �(q f : �).⇧(r g : � · (q, f)).⇤i

[x]� := x �e �(x)

[�x : A. M ]� := �x : [[A]]!�. [M ]�·x

[M N ]� := [M ]� [N ]!�

[⇧x : A. B]� := �(q f : �).⇧x : [[A]]!�·(q,f). [[B]]�·(q,f)·x

[[A]]� := [A]� �e id�e

[M ]!� := �(q f : �). [M ]�·(q,f)

[[A]]!� := ⇧(q f : �). [[A]]�·(q,f)

Note that the three last definitions are simple macros definable
in terms of the basic forcing translation that will be used perva-
sively to ease the reading. In particular, the [�]!� and [[�]]!� macros
correspond respectively to the interpretation of thunk and U in the
call-by-push-value decomposition.

Assuming that � ` �, which we will do implicitly afterwards,
we now define the forcing translation on contexts as follows.

[[·]]p := p : P
[[�]]�·(q,f) := [[�]]�, q : P, f : Hom(�e, q)

[[�, x : A]]�·x := [[�]]�, x : [[A]]!�

We now turn to the proof that this translation indeed preserves
the typing rules of our theory. As proper typing rules and conver-
sion rules are intermingled, we should actually prove it in a mutu-
ally recursive fashion, but this would be fairly unreadable. There-
fore, in the following proofs, we rather assume that computational
(resp. typing) soundness are already proved for the induction hy-
potheses, in an open recursion style. This is a mere presentation
artifact: the loop is tied at the end by plugging the two soundness
theorems together.

Proposition 8 (Condition Concatenation). For any � ` M : A,
and forcing contexts �, ',  with ' containing only conditions and
morphisms,

[[�]]�·'· ` [M ]�·(q,f)· {q := (� · ')e, f := (')} ⌘ [M ]�·'· 

where (') stands for the composition of all morphisms in '.
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Is the definitional side stronger?

This variant is motivated by a Curry-Howard stance.

I No categorical equivalent from the literature (?).

I Definitely not a presheaf construction!

I In particular, no monotonicity / restrictions

I Only known relative comes from Krivine and Miquel (also CH)

I Yet, still the same object in the simply-typed case.

I Can be used for NBE as well

What is this beast?
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Yoneda to the rescue

Technical issue: how can P have definitional laws?

Answer: using this one weird old Yoneda trick!

(P,≤) 7→ (PY ,≤Y)

PY := P
p ≤Y q := Πr : P. q ≤ r → p ≤ r

Yoneda lemma

I The category (PY ,≤Y) is equivalent to (P,≤) (assuming
parametricity and functional extensionality).

I Furthermore, it has definitional laws as associativity of
functions is on the nose in ITT.
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Inductive types

Up to now, we only interpret the negative fragment (Π +�).

Adapting to (positive) inductive types.
We just need to box all subterms!

[[Σx : A.B]]p := Σ(x : Πq ≤ p. [[A]]q). (Πq ≤ p. [[B]]q)

[[A+B]]p := (Πq ≤ p. [[A]]q) + (Πq ≤ p. [[B]]q)

Inductive [[N]]p : � := [O] : [[N]]p | [S] : (Πq ≤ p. [[N]]q)→ [[N]]p
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Dependent elimination

Yet, the translation does not interpret full dependent elimination.

Nrec Π(P : �). P → (P → P )→ N→ P X
Nind Π(P : N→ �). P O→ (Πn : N. P n→ P (S n))→ Πn : N. P n z

Effects  Non-standard inductive terms
(A well-known issue. See e.g. Herbelin’s CIC + callcc)

Luckily there is a surprise solution coming from classical
realizability.

Storage operators!
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Storage operators

I They allow to prove induction principles in presence of callcc

I Essentially emulate CBV in CBN through a CPS

I Defined in terms of non-dependent recursion

θN : N→ ΠR : �. (N→ R)→ R

θN := Nrec (λR k. k 0)(λñ R k. ñ R (λn. k (S n)))

I Trivial in CIC: CIC ` Πn R k. θN n R k =R k n

I The above propositional η-rule is negated by the forcing
translation

I But it interprets a restricted dependent elimination!

Nĩnd ΠP. P O→ (Πn : N. P n→ θN (S n) � P )→ Πn : N. θN n � P X
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Implementation & examples

I A plugin for Coq generating translated terms

A truly definitional translation!

I A handful of independence results and usecases

 Preserves UIP and functional extensionality

 Generate anomalous types that negate univalence

 Preserves (a simple version of) univalence for modal types

 Step indexing (FRP, � fuel trick �)

 Give some intuition for the cubical model

I Demo
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What remains to be done

I Recover a propositional η-rule by using parametricity

I Understanding the cubical model in CBN.

I Design a general theory of CIC + effects using storage
operators

I The next 700 translations of CIC into itself, degenerate
translations. E.g. breaking parametricity with built-in quote

operators.
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The End

https://github.com/CoqHott/coq-forcing
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