y 4

: informatics,mathematics

Forcing Translations in Type Theory
M. Sozeau, Inria Paris & IRIF
jww. G. Jaber, G. Lewertowski, P.-M. Pédrot & N. Tabareau

Categorical Logic & Univalent Foundations
Leeds, UK
July 28th 2016



Forcing in a Nutshell

» Historically, forcing is a model transformation

» Several names for the same concept

~Y ~Y

Forcing translation = Kripke models = Presheaf construction
(Set theory) (Modal logic) (Category theory)

» Usually, set-theoretic forcing is classical

» We will study intuitionistic forcing, in intuitionistic type theory



Why use forcing?



Why use forcing?

> Set theory: a lot of independence results continuum
hypothesis, AC, ...

» Modal logic and Kripke Models



Why use forcing?

> Set theory: a lot of independence results continuum
hypothesis, AC, ...

» Modal logic and Kripke Models
» Category theory: a HoTT topic!

» Many models arise from presheaf constructions

Coquand & al.’'s cubical model of univalence is an example
Also step-indexing, parametricity...

But this targets sets or topoi usually

vV vy

We want forcing in Type Theory!



Intuitionistic Forcing in LJ (Kripke, presheaf)

Assume a preorder (P, <). We summarize the forcing translation in
LJ.

» To a formula A, we associate a P-indexed formula [A],.
» To a proof - A, we associate a proof of Vp : P, [A],.
» (Target theory not really specified here, think AII.)

< PP are possible worlds, [A],, is truth at world p >



Intuitionistic Forcing in LJ (Kripke, presheaf)

Assume a preorder (P, <). We summarize the forcing translation in
LJ.

» To a formula A, we associate a P-indexed formula [A],.
» To a proof - A, we associate a proof of Vp : P, [A],.
» (Target theory not really specified here, think AII.)

< PP are possible worlds, [A],, is truth at world p >

Most notably,

[A — B], :=Vq < p.[A], — [B],



Intuitionistic Forcing in LJ (Kripke, presheaf)

Assume a preorder (P, <). We summarize the forcing translation in
LJ.

» To a formula A, we associate a P-indexed formula [A],.
» To a proof - A, we associate a proof of Vp : P, [A],.
» (Target theory not really specified here, think AII.)

< PP are possible worlds, [A],, is truth at world p >

Most notably,

[A — B], :=Vq < p.[A], — [B],

Actually this can be adapted straightforwardly to any category
(P, Hom).



Through the Curry-Howard Lens

The previous soundness theorem also makes sense in a
proof-relevant world:

If =¢: Athen p:PH[¢],: [A],



Through the Curry-Howard Lens

The previous soundness theorem also makes sense in a
proof-relevant world:

If =¢: Athen p:PH[¢],: [A],

. and the translation can be thought of as a monotonous monad

reader
Reader Forcing
TA=P— A T,A:=VYq:Pg<p— A
read: 1 —» P read: 1 —» P

enter: (1 - A) =P — A | enter: (1 - A) > Vp:P,p<read() - A



Through the Curry-Howard Lens

The previous soundness theorem also makes sense in a
proof-relevant world:

If =¢: Athen p:PH[¢],: [A],

. and the translation can be thought of as a monotonous monad

reader
Reader Forcing
TA=P— A T,A:=VYq:Pg<p— A
read: 1 —» P read: 1 —» P

enter: (1 - A) =P — A | enter: (1 - A) > Vp:P,p<read() - A

In particular, taking (P, <) to be a full preorder gives the reader
monad.



Idea of the proof and use

» Substitution lemma for the interpretation.

» “Computational soundness”: t —g u = [t] =3 [u]



Idea of the proof and use

» Substitution lemma for the interpretation.

» “Computational soundness”: t —g u = [t] =3 [u]

One can add “generic” elements in the forcing layer by inhabiting
their translations:

Frpa:y] £ a®:Vp: P[],

Thanks to soundness of the translation, and (assumed) consistency
of the source system, as soon as [P is inhabited:

Fpt:Ll=p:PH[t],:[Ll,=lq¢<plL

We have equiconsistency.



Do it, or do not: there is no try

In 2012, we gave a forcing translation from CC,, + 3 into itself.



Do it, or do not: there is no try

In 2012, we gave a forcing translation from CC,, + 3 into itself.

Intuitively, not that difficult.
» To a type - A : O associate p : P+ [A], : 0.

» To aterm ¢ : A associate p : P+ [t], : [A], by induction on
t



Do it, or do not: there is no try

In 2012, we gave a forcing translation from CC,, + 3 into itself.

Intuitively, not that difficult.
» To a type - A : O associate p : P+ [A], : 0.
» To aterm ¢ : A associate p : P+ [t], : [A], by induction on

t
» To handle types-as-terms uniformly, [-] is defined through [-]
[Al, :+ ([g<p—0). (Atype)
[Al, = [Alppidp

» Translation of the dependent arrow is almost the same:

[z : A. B], =1lg < p. 11z : [A],. [Bl,



Do it, or do not: there is no try

In 2012, we gave a forcing translation from CC,, + 3 into itself.

Intuitively, not that difficult.
» To a type - A : O associate p : P+ [A], : 0.
» To aterm ¢ : A associate p : P+ [t], : [A], by induction on

t
» To handle types-as-terms uniformly, [-] is defined through [-]
[Al, :+ ([g<p—0). (Atype)
[Al, = [Alppidp

» Translation of the dependent arrow is almost the same:
[z : A. B], =1lg < p. 11z : [A],. [Bl,

. except that we must add restrictions!



To presheaves

We move to:

A, = Xf: (Mg <p—0). (A type)
{0 :1g <pllr<gq.fq— fr]| (O restriction)
refl(6,p) A trans(0,p)} (© functorial)

[Al, == (m [A]y) pidy



To presheaves

We move to:

(A,  : Ef:(g<p—0). (A type)
{0:1lg <pllr<q.fq— fr] (O restriction)
refl(6,p) A trans(0,p)} (© functorial)

[Al, = (m [Alp) pidy

In general, under a context o of variables + forcing conditions:

g dif g,0 (517)
[‘T]p - 902 (;:)—>p



To presheaves

We move to:

(A,  : Ef:(g<p—0). (A type)
{0:1lg <pllr<q.fq— fr] (O restriction)
refl(6,p) A trans(0,p)} (© functorial)

[Al, = (m [Alp) pidy

In general, under a context o of variables + forcing conditions:

g dif g,0 (517)
[.’I‘]p - 902 (;:)—>p

Now we have witnesses everywhere



To presheaves

We move to:

(A,  : Ef:(g<p—0). (A type)
{0 :1g <pllr<gq.fq— fr]| (O restriction)
refl(6,p) A trans(0,p)} (© functorial)

[Al, = (m [A]y) p idy

In general, under a context o of variables + forcing conditions:
def o,01(x)
[.’IZ‘]Z _ 902(;:)—>p

Now we have witnesses everywhere
... but it’s no longer computationally sound!



Some proofs are more equal than others

The culprit is the conversion rule:

Ft: A A= B . p:PF[t], '[[A]]p [A]l, =5 [Bl,
Ft:B p:PF[t],: [Bl,
In general, A =3 B does not imply [A], =g [[B]]p, as restrictions
do not commute/compose “on the nose”.




Some proofs are more equal than others

The culprit is the conversion rule:

Ft: A A= B . p:PF[t], '[[A]]p [A]l, =5 [Bl,
Ft:B p:PF[t],: [Bl,
In general, A =3 B does not imply [A], =g [[B]]p, as restrictions
do not commute/compose “on the nose”.

def

[Nz : T.UJg < {f: g : Pl : [T]5.[U]7 T |

commy (f,T,U,p)}

[71g 2> [UTg

o, T o, U
ap‘)Ql lepﬁq

(713 5 [U1g



When conversion matters

We only recover that A =g B implies p : P+ [A], =g [B],.
In the end, you cannot interpret conversion by mere conversion.

Ft: A A=3 B . p:PE[t],: [Alp 7 [A], = [Bl»
Ft:B p: PF transport([n],[t],) : [B],

The < diagram > does not commute in ITT

10



When conversion matters

We only recover that A =g B implies p : P+ [A], =g [B],.
In the end, you cannot interpret conversion by mere conversion.

Ft: A A=3 B . p:PE[t],: [Alp 7 [A], = [Bl»
Ft:B p: PF transport([n],[t],) : [B],

The < diagram > does not commute in ITT

It raises a hell of coherence issues.

» Breaks computation
» Requires definitional UIP in the target (i.e. OTT or ETT)

» Requires that < is proof-irrelevant.
» Only preorder-based presheaf models!

10



Nonetheless

In a modified CoQ with definitional proof-irrelevance (for Prop):

» We could adapt the proof of consistency of the negation of
the continuum hypothesis.

» We could internalize step indexing as a forcing layer (i.e. to
obtain a general fixpoint in type theory).

11



Step-indexing as a forcing layer

Take P £ N with the standard order relation.
> Define >g: [ — [ the “later” modality on [ in the forcing

layer.

By translation we must provide a witness of

IIg < pIIT : [O],, [O]4, which computes to the unit type
when ¢ = 0 and the nth-approximation of 1" at n + 1.

12



Step-indexing as a forcing layer

Take P 2 N with the standard order relation.

> Define >g: [ — [ the “later” modality on [ in the forcing
layer.
By translation we must provide a witness of
IIg < pIIT : [O],, [O]4, which computes to the unit type
when ¢ = 0 and the nth-approximation of 1" at n + 1.

» Define fixy : (>g T — T') — T (the Lob rule) by providing a
witness using the “step-index”.

» Define the lifting nexty : (T' —>g T'), morally “delay”.

12



Step-indexing as a forcing layer

Take P £ N with the standard order relation.
> Define >g: [ — [ the “later” modality on [ in the forcing
layer.
By translation we must provide a witness of
IIg < pIIT : [O],, [O]4, which computes to the unit type
when ¢ = 0 and the nth-approximation of 1" at n + 1.
» Define fixy : (>g T — T') — T (the Lob rule) by providing a
witness using the “step-index”.
» Define the lifting nexty : (T' —>g T'), morally “delay”.
In the forcing layer, it becomes possible to reason with general
fixpoints on types having the unfolding lemma:

fixp f = f (next (fixp f))

12



Issues

The setup is not very satisfactory though:
» Doubts about coherence of the whole translation.

» Tedious proofs involving rewriting appear when reasoning with
these fixpoints.

13



A new hope

Interestingly the Curry-Howard isomorphism explains the difficulties
with this translation.

Root of the failure
The usual forcing [-], translation is call-by-value.

That is, assuming (P, <) has definitional laws:
t =gy u implies [tlp =5 [ulp
where [u is generated by the rule:

(Az.t)V —py t{z =V} (V' a value)

This problem is already here in the simply-typed case but less
troublesome.



The Two Sides of Forcing

There is an easy Call-by-Push-Value decomposition of forcing.

cBvV
CBPV

\ /

CBN

15



The Two Sides of Forcing

There is an easy Call-by-Push-Value decomposition of forcing.

» Precomposing by the CBV decomposition we recover the
usual forcing

cBvV

CBPV
CBN

15



The Two Sides of Forcing

There is an easy Call-by-Push-Value decomposition of forcing.

» Precomposing by the CBV decomposition we recover the
usual forcing

» Precomposing by the CBN decomposition we obtain a new
translation

» ... much closer to Krivine and Miquel's classical variant

CBV

CBPV
CBN

15



CBN provides new abilities

You only have to change the interpretation of the arrow.

CBV [Ilz: A.B], =g < p.Ilz : [A],. [B]q
CBN [Hz:A.B], =1I(z : IIg < p.[A],)- [Bl,

16



CBN provides new abilities

You only have to change the interpretation of the arrow.

CBV [Ilz: A.B], =g < p.Ilz : [A],. [B]q
CBN [Hz:A.B], =1I(z : IIg < p.[A],)- [Bl,
CBN [z], =z p iq,

16



CBN provides new abilities

You only have to change the interpretation of the arrow.
CBV [Ilz: A.B], =g < p.Ilz : [A],. [B]q
CBN [Hz:A.B], =1I(z : IIg < p.[A],)- [Bl,
CBN [z], =z p iq,

.. and everything follows naturally (CBN is somehow a < free
> construction).

Assuming that P has definitional laws (for identity and composi-
tion), then [-] provides a non-trivial translation from CC,, into itself
preserving typing and conversion.

This is to the best of our knowledge, the first effectful translation
of CC,,.

16



The translation

[+], = Mqgf:o).Ill(rg:o-(q,f)) =
(O], = Mqf:0).1l(rg:o-(q,f)) U
[z] x oc o(x)

x: A. M|, Az [A]L.[M],.,

[M N], [M], [N],,

[z : A. B, Naf:o).Ta: [Al. - [Bloo e
[A], [A], oc ido,

[M]'g = Mqf ZU)-[M]U.(q,f)

[A]. = Mg f:0) [Al,.p

[1, = p:P

L P = [I,,q:P,f:Hom(oe,q)

C,z:A],, = [T],,x: [[A]]‘o'

17



Is the definitional side stronger?

This variant is motivated by a Curry-Howard stance.
» No categorical equivalent from the literature (7).

» Definitely not a presheaf construction!

v

In particular, no monotonicity / restrictions

v

Only known relative comes from Krivine and Miquel (also CH)

v

Yet, still the same object in the simply-typed case.
Can be used for NBE as well

v

What is this beast?

18



Yoneda to the rescue

Technical issue: how can P have definitional laws?

19



Yoneda to the rescue

Technical issue: how can P have definitional laws?

Answer: using this one weird old Yoneda trick!

(]P)a S) = (]Py, Sy)

Py = P
p<yq = IIr:Pg<r—=p<r

Yoneda lemma

» The category (Py, <y) is equivalent to (P, <) (assuming
parametricity and functional extensionality).

» Furthermore, it has definitional laws as associativity of
functions is on the nose in ITT.



Inductive types

Up to now, we only interpret the negative fragment (II + O).

20



Inductive types

Up to now, we only interpret the negative fragment (II + O).

Adapting to (positive) inductive types.
We just need to box all subterms!

[Xz:A.B], = X(z:1Ig <p.[A]y). (Ilg < p.[B],)
[A+ Bl = (g <p.[A4]¢) + (lg < p. [B],)
Inductive [N], : O:=[0] : [N], | [S] : (Ilg < p.[N],) — [N],

20



Dependent elimination

Yet, the translation does not interpret full dependent elimination.

Neeo I(P:0).P—>(P—>P) NP v
Nipg I(P:N—-O).P0— (IIn:N.Pn—P (Sn)) -IIn:N.Pn K

21



Dependent elimination

Yet, the translation does not interpret full dependent elimination.

N,. I(P:0).P—({P—>P) NP v
Nipgg I(P:N—0O).P0— (IIn:N.Pn—P(Sn)—>In:N.Pn X



Dependent elimination

Yet, the translation does not interpret full dependent elimination.

N,. I(P:0).P—({P—>P) NP v
Nipgg I(P:N—0O).P0— (IIn:N.Pn—P(Sn)—>In:N.Pn X

Luckily there is a surprise solution coming from classical
realizability.

Storage operators!



Storage operators

» They allow to prove induction principles in presence of callcc
» Essentially emulate CBV in CBN through a CPS

» Defined in terms of non-dependent recursion

On : N—-IR:O(N—=R)— R
Oy = Ny ARE.KO)(M R k.s R (\n.k (S 1))

22



Storage operators

» They allow to prove induction principles in presence of callcc
» Essentially emulate CBV in CBN through a CPS

» Defined in terms of non-dependent recursion

by : N—-STIIR:O.(N—R)—R
On = Npee AREk.kO0)(M RE.W R (An.k (S n)))

» Trivial in CIC: CICFIIn Rk. Oyn Rk=rkn

» The above propositional 7-rule is negated by the forcing
translation

» But it interprets a restricted dependent elimination!

22



Storage operators

» They allow to prove induction principles in presence of callcc
» Essentially emulate CBV in CBN through a CPS

» Defined in terms of non-dependent recursion

by : N—-STIIR:O.(N—R)—R
On = Npee AREk.kO0)(M RE.W R (An.k (S n)))

» Trivial in CIC: CICFIIn Rk. Oyn Rk=rkn

» The above propositional 7-rule is negated by the forcing
translation

» But it interprets a restricted dependent elimination!

Ng

nd

NP.PO0— (IIn:N.Pn—6y (Sn)OP)—->IIn:N.o0ynOP

22



Implementation & examples

> A plugin for Coq generating translated terms

A truly definitional translation!

23



Implementation & examples

» A plugin for Coq generating translated terms
A truly definitional translation!
» A handful of independence results and usecases
Preserves UIP and functional extensionality

Generate anomalous types that negate univalence

Step indexing (FRP, < fuel trick >)

~
~
~~ Preserves (a simple version of) univalence for modal types
e
~» Give some intuition for the cubical model

23



Implementation & examples

>

FE A A A

A plugin for Coq generating translated terms
A truly definitional translation!

A handful of independence results and usecases

Preserves UIP and functional extensionality

Generate anomalous types that negate univalence
Preserves (a simple version of) univalence for modal types
Step indexing (FRP, < fuel trick >)

Give some intuition for the cubical model

Demo

23



What remains to be done

» Recover a propositional n-rule by using parametricity

» Understanding the cubical model in CBN.

» Design a general theory of CIC + effects using storage
operators

> The next 700 translations of CIC into itself, degenerate
translations. E.g. breaking parametricity with built-in quote
operators.

24



Related Work & References

» The Independence of Markov's Principle in Type Theory. T.
Coquand, B. Mannaa, FSCD 2016

» Forcing as a Program Transformation, A. Miquel, LICS 2011.

» The Definitional Side of Forcing - G. Jaber, G. Lewertowski,
P-M. Pédrot, M. Sozeau, N. Tabareau, LICS’16

» Forcing in Type Theory - G. Jaber, M. Sozeau & N. Tabareau,
LICS'12

25



The End

https://github.com/CogHott/coq-forcing

26


https://github.com/CoqHott/coq-forcing

