Forcing Translations in Type Theory

 M. Sozeau, Inria Paris \& IRIF jww. G. Jaber, G. Lewertowski, P.-M. Pédrot \& N. TabareauCategorical Logic \& Univalent Foundations Leeds, UK July 28th 2016

Forcing in a Nutshell

- Historically, forcing is a model transformation
- Several names for the same concept

Forcing translation Kripke models \cong Presheaf construction (Set theory) (Modal logic) (Category theory)

- Usually, set-theoretic forcing is classical
- We will study intuitionistic forcing, in intuitionistic type theory

Why use forcing?

Why use forcing?

- Set theory: a lot of independence results continuum hypothesis, AC, ...
- Modal logic and Kripke Models

Forcing

Why use forcing?

- Set theory: a lot of independence results continuum hypothesis, AC, ...
- Modal logic and Kripke Models
- Category theory: a HoTT topic!
- Many models arise from presheaf constructions
- Coquand \& al.'s cubical model of univalence is an example
- Also step-indexing, parametricity...
- But this targets sets or topoi usually

We want forcing in Type Theory!

Intuitionistic Forcing in LJ (Kripke, presheaf)

Assume a preorder (\mathbb{P}, \leq). We summarize the forcing translation in LJ.

- To a formula A, we associate a \mathbb{P}-indexed formula $\llbracket A \rrbracket_{p}$.
- To a proof $\vdash A$, we associate a proof of $\forall p: \mathbb{P}, \llbracket A \rrbracket_{p}$.
- (Target theory not really specified here, think $\lambda \Pi$.)
$\ll \mathbb{P}$ are possible worlds, $\llbracket A \rrbracket_{p}$ is truth at world $p \gg$

Intuitionistic Forcing in LJ (Kripke, presheaf)

Assume a preorder (\mathbb{P}, \leq). We summarize the forcing translation in LJ.

- To a formula A, we associate a \mathbb{P}-indexed formula $\llbracket A \rrbracket_{p}$.
- To a proof $\vdash A$, we associate a proof of $\forall p: \mathbb{P}, \llbracket A \rrbracket_{p}$.
- (Target theory not really specified here, think $\lambda \Pi$.)
$\ll \mathbb{P}$ are possible worlds, $\llbracket A \rrbracket_{p}$ is truth at world $p \gg$

Most notably,

$$
\llbracket A \rightarrow B \rrbracket_{p}:=\forall q \leq p . \llbracket A \rrbracket_{q} \rightarrow \llbracket B \rrbracket_{q}
$$

Intuitionistic Forcing in LJ (Kripke, presheaf)

Assume a preorder (\mathbb{P}, \leq). We summarize the forcing translation in LJ.

- To a formula A, we associate a \mathbb{P}-indexed formula $\llbracket A \rrbracket_{p}$.
- To a proof $\vdash A$, we associate a proof of $\forall p: \mathbb{P}, \llbracket A \rrbracket_{p}$.
- (Target theory not really specified here, think $\lambda \Pi$.)
$\ll \mathbb{P}$ are possible worlds, $\llbracket A \rrbracket_{p}$ is truth at world $p \gg$

Most notably,

$$
\llbracket A \rightarrow B \rrbracket_{p}:=\forall q \leq p . \llbracket A \rrbracket_{q} \rightarrow \llbracket B \rrbracket_{q}
$$

Actually this can be adapted straightforwardly to any category (\mathbb{P}, Hom).

Through the Curry-Howard Lens

The previous soundness theorem also makes sense in a proof-relevant world:

$$
\text { If } \vdash t: A \text { then } p: \mathbb{P} \vdash[t]_{p}: \llbracket A \rrbracket_{p}
$$

Through the Curry-Howard Lens

The previous soundness theorem also makes sense in a proof-relevant world:

$$
\text { If } \vdash t: A \text { then } p: \mathbb{P} \vdash[t]_{p}: \llbracket A \rrbracket_{p}
$$

... and the translation can be thought of as a monotonous monad reader

Reader	Forcing
$T A:=\mathbb{P} \rightarrow A$	$T_{p} A:=\forall q: \mathbb{P}, q \leq p \rightarrow A$
read $: 1 \rightarrow \mathbb{P}$	read $: 1 \rightarrow \mathbb{P}$
enter $:(1 \rightarrow A) \rightarrow \mathbb{P} \rightarrow A$	enter : $(1 \rightarrow A) \rightarrow \forall p: \mathbb{P}, p \leq \operatorname{read}() \rightarrow A$

Through the Curry-Howard Lens

The previous soundness theorem also makes sense in a proof-relevant world:

$$
\text { If } \vdash t: A \text { then } p: \mathbb{P} \vdash[t]_{p}: \llbracket A \rrbracket_{p}
$$

... and the translation can be thought of as a monotonous monad reader

Reader	Forcing
$T A:=\mathbb{P} \rightarrow A$	$T_{p} A:=\forall q: \mathbb{P}, q \leq p \rightarrow A$
read $: 1 \rightarrow \mathbb{P}$	read $: 1 \rightarrow \mathbb{P}$
enter $:(1 \rightarrow A) \rightarrow \mathbb{P} \rightarrow A$	enter : $(1 \rightarrow A) \rightarrow \forall p: \mathbb{P}, p \leq \operatorname{read}() \rightarrow A$

In particular, taking (\mathbb{P}, \leq) to be a full preorder gives the reader monad.

Idea of the proof and use

- Substitution lemma for the interpretation.
- "Computational soundness" : $t \rightarrow_{\beta} u \Rightarrow[t] \equiv_{\beta}[u]$

Idea of the proof and use

- Substitution lemma for the interpretation.
- "Computational soundness" : $t \rightarrow_{\beta} u \Rightarrow[t] \equiv_{\beta}[u]$

One can add "generic" elements in the forcing layer by inhabiting their translations:

$$
\left[\vdash_{\mathbb{F}} a: \psi\right] \triangleq a^{\bullet}: \forall p: \mathbb{P}, \llbracket \psi \rrbracket_{p}
$$

Thanks to soundness of the translation, and (assumed) consistency of the source system, as soon as \mathbb{P} is inhabited:

$$
\vdash_{\mathbb{F}} t: \perp \Rightarrow p: \mathbb{P} \vdash[t]_{p}: \llbracket \perp \rrbracket_{p} \equiv \Pi q \leq p . \perp
$$

We have equiconsistency.

Do it, or do not: there is no try

In 2012, we gave a forcing translation from $\mathrm{CC}_{\omega}+\Sigma$ into itself.

Do it, or do not: there is no try

In 2012, we gave a forcing translation from $\mathrm{CC}_{\omega}+\Sigma$ into itself.
Intuitively, not that difficult.

- To a type $\vdash A: \square$ associate $p: \mathbb{P} \vdash \llbracket A \rrbracket_{p}: \square$.
- To a term $\vdash t: A$ associate $p: \mathbb{P} \vdash[t]_{p}: \llbracket A \rrbracket_{p}$ by induction on t

Do it, or do not: there is no try

In 2012, we gave a forcing translation from $\mathrm{CC}_{\omega}+\Sigma$ into itself.
Intuitively, not that difficult.

- To a type $\vdash A: \square$ associate $p: \mathbb{P} \vdash \llbracket A \rrbracket_{p}: \square$.
- To a term $\vdash t: A$ associate $p: \mathbb{P} \vdash[t]_{p}: \llbracket A \rrbracket_{p}$ by induction on t
- To handle types-as-terms uniformly, $\llbracket \cdot \rrbracket$ is defined through [.]

$$
\begin{aligned}
& {[A]_{p}: \quad(\Pi q \leq p \rightarrow \square) . \quad(A \text { type })} \\
& \llbracket A \rrbracket_{p}:=\quad[A]_{p} p \mathrm{id}_{p}
\end{aligned}
$$

- Translation of the dependent arrow is almost the same:

$$
\llbracket \Pi x: A . B \rrbracket_{p} \equiv \Pi q \leq p . \Pi x: \llbracket A \rrbracket_{q} \cdot \llbracket B \rrbracket_{q}
$$

Do it, or do not: there is no try

In 2012, we gave a forcing translation from $\mathrm{CC}_{\omega}+\Sigma$ into itself.
Intuitively, not that difficult.

- To a type $\vdash A: \square$ associate $p: \mathbb{P} \vdash \llbracket A \rrbracket_{p}: \square$.
- To a term $\vdash t: A$ associate $p: \mathbb{P} \vdash[t]_{p}: \llbracket A \rrbracket_{p}$ by induction on t
- To handle types-as-terms uniformly, $\llbracket \cdot \rrbracket$ is defined through [•]

$$
\begin{aligned}
& {[A]_{p}: \quad(\Pi q \leq p \rightarrow \square) . \quad(A \text { type })} \\
& \llbracket A \rrbracket_{p}:=\quad[A]_{p} p \text { id }_{p}
\end{aligned}
$$

- Translation of the dependent arrow is almost the same:

$$
\llbracket \Pi x: A . B \rrbracket_{p} \equiv \Pi q \leq p . \Pi x: \llbracket A \rrbracket_{q} . \llbracket B \rrbracket_{q}
$$

... except that we must add restrictions!

We move to:

$$
\begin{array}{rlrr}
{[A]_{p}:} & \sum f:(\Pi q \leq p \rightarrow \square) . & (A \text { type }) \\
& \{\theta: \Pi q \leq p \cdot \Pi r \leq q \cdot f q \rightarrow f r \mid & (\Theta \text { restriction }) \\
& & \text { refl }(\theta, p) \wedge \operatorname{trans}(\theta, p)\} & (\Theta \text { functorial }) \\
\llbracket A \rrbracket_{p}:= & \left(\pi_{1}[A]_{p}\right) p \operatorname{id}_{p} &
\end{array}
$$

We move to:

$$
\begin{aligned}
& {[A]_{p} \quad: \quad \Sigma f:(\Pi q \leq p \rightarrow \square) .} \\
& \{\theta: \Pi q \leq p . \Pi r \leq q . f q \rightarrow f r \mid \quad(\Theta \text { restriction) } \\
& \operatorname{refl}(\theta, p) \wedge \operatorname{trans}(\theta, p)\} \quad(\Theta \text { functorial) } \\
& \llbracket A \rrbracket_{p}:=\left(\pi_{1}[A]_{p}\right) p \mathrm{id}_{p}
\end{aligned}
$$

In general, under a context σ of variables + forcing conditions:

$$
[x]_{p}^{\sigma} \quad \stackrel{\text { def }}{=} \quad \theta_{\sigma_{2}(x) \rightarrow p}^{\sigma, \sigma_{1}(x)} x
$$

We move to:

$$
\begin{array}{lllr}
{[A]_{p}:} & \sum f:(\Pi q \leq p \rightarrow \square) . & \text { (} A \text { type }) \\
& \{\theta: \Pi q \leq p \cdot \Pi r \leq q \cdot f q \rightarrow f r \mid & (\Theta \text { restriction }) \\
& & \operatorname{refl}(\theta, p) \wedge \operatorname{trans}(\theta, p)\} & (\Theta \text { functorial }) \\
\llbracket A \rrbracket_{p}:= & \left(\pi_{1}[A]_{p}\right) p \operatorname{id}_{p} &
\end{array}
$$

In general, under a context σ of variables + forcing conditions:

$$
[x]_{p}^{\sigma} \quad \stackrel{\text { def }}{=} \quad \theta_{\sigma_{2}(x) \rightarrow p}^{\sigma, \sigma_{1}(x)} x
$$

Now we have witnesses everywhere

We move to:

$$
\begin{array}{llrr}
{[A]_{p}:} & \sum f:(\Pi q \leq p \rightarrow \square) . & (A \text { type }) \\
& \{\theta: \Pi q \leq p \cdot \Pi r \leq q \cdot f q \rightarrow f r \mid & (\Theta \text { restriction }) \\
& & \operatorname{refl}(\theta, p) \wedge \operatorname{trans}(\theta, p)\} & (\Theta \text { functorial }) \\
\llbracket A \rrbracket_{p}:= & \left(\pi_{1}[A]_{p}\right) p \operatorname{id}_{p} &
\end{array}
$$

In general, under a context σ of variables + forcing conditions:

$$
[x]_{p}^{\sigma} \quad \stackrel{\text { def }}{=} \quad \theta_{\sigma_{2}(x) \rightarrow p}^{\sigma, \sigma_{1}(x)} x
$$

Now we have witnesses everywhere
... but it's no longer computationally sound!

Some proofs are more equal than others

The culprit is the conversion rule:

$$
\frac{\vdash t: A \quad A \equiv_{\beta} B}{\vdash t: B} \rightsquigarrow \frac{p: \mathbb{P} \vdash[t]_{p}: \llbracket A \rrbracket_{p} \quad \llbracket A \rrbracket_{p} \equiv_{\beta} \llbracket B \rrbracket_{p}}{p: \mathbb{P} \vdash[t]_{p}: \llbracket B \rrbracket_{p}}
$$

In general, $A \equiv_{\beta} B$ does not imply $\llbracket A \rrbracket_{p} \equiv_{\beta} \llbracket B \rrbracket_{p}$, as restrictions do not commute/compose "on the nose".

Some proofs are more equal than others

The culprit is the conversion rule:

$$
\frac{\vdash t: A \quad A \equiv_{\beta} B}{\vdash t: B} \rightsquigarrow \frac{p: \mathbb{P} \vdash[t]_{p}: \llbracket A \rrbracket_{p} \quad \llbracket A \rrbracket_{p} \equiv_{\beta} \llbracket B \rrbracket_{p}}{p: \mathbb{P} \vdash[t]_{p}: \llbracket B \rrbracket_{p}}
$$

In general, $A \equiv_{\beta} B$ does not imply $\llbracket A \rrbracket_{p} \equiv_{\beta} \llbracket B \rrbracket_{p}$, as restrictions do not commute/compose "on the nose".

$$
\begin{array}{r}
\llbracket \Pi x: T . U \rrbracket_{p}^{\sigma} \stackrel{\text { def }}{=}\left\{f: \Pi q: \mathcal{P}_{p} \Pi x: \llbracket T \rrbracket_{q}^{\sigma} \cdot \llbracket U \rrbracket_{q}^{\sigma+(x, T, q)} \mid\right. \\
\\
\left.\operatorname{comm}_{\Pi}(f, T, U, p)\right\}
\end{array}
$$

$$
\begin{gathered}
\llbracket T \rrbracket_{p}^{\sigma} \xrightarrow{f_{p}} \llbracket \llbracket U \rrbracket_{p}^{\sigma} \\
\begin{array}{c}
\theta_{p \rightarrow q}^{\sigma, T} \\
\downarrow \\
\llbracket T \rrbracket_{q}^{\sigma} \xrightarrow[f_{q}]{\theta_{p \rightarrow q}^{\sigma, U}} \\
\downarrow \\
\downarrow U \rrbracket_{q}^{\sigma}
\end{array}
\end{gathered}
$$

When conversion matters

We only recover that $A \equiv_{\beta} B$ implies $p: \mathbb{P} \vdash \llbracket A \rrbracket_{p}=\square \llbracket B \rrbracket_{p}$. In the end, you cannot interpret conversion by mere conversion.

$$
\frac{\vdash t: A \quad A \equiv{ }_{\beta} B}{\vdash t: B} \rightsquigarrow \frac{p: \mathbb{P} \vdash[t]_{p}: \llbracket A \rrbracket_{p} \quad \pi: \llbracket A \rrbracket_{p}=\llbracket B \rrbracket_{p}}{p: \mathbb{P} \vdash \operatorname{transport}\left([\pi],[t]_{p}\right): \llbracket B \rrbracket_{p}}
$$

The «diagram $»$ does not commute in ITT

We only recover that $A \equiv_{\beta} B$ implies $p: \mathbb{P} \vdash \llbracket A \rrbracket_{p}=\square \llbracket B \rrbracket_{p}$. In the end, you cannot interpret conversion by mere conversion.

The $<$ diagram $»$ does not commute in ITT
It raises a hell of coherence issues.

- Breaks computation
- Requires definitional UIP in the target (i.e. OTT or ETT)
- Requires that \leq is proof-irrelevant.
- Only preorder-based presheaf models!

In a modified CoQ with definitional proof-irrelevance (for Prop):

- We could adapt the proof of consistency of the negation of the continuum hypothesis.
- We could internalize step indexing as a forcing layer (i.e. to obtain a general fixpoint in type theory).

Step-indexing as a forcing layer

Take $\mathbb{P} \triangleq \mathbb{N}$ with the standard order relation.

- Define $\nabla_{\square}: \square \rightarrow \square$ the "later" modality on \square in the forcing layer.
By translation we must provide a witness of $\Pi q \leq p . \Pi T: \llbracket \square \rrbracket_{q}, \llbracket \square \rrbracket_{q}$, which computes to the unit type when $q=0$ and the n th-approximation of T at $n+1$.

Step-indexing as a forcing layer

Take $\mathbb{P} \triangleq \mathbb{N}$ with the standard order relation.

- Define $\nabla_{\square}: \square \rightarrow \square$ the "later" modality on \square in the forcing layer.
By translation we must provide a witness of $\Pi q \leq p . \Pi T: \llbracket \square \rrbracket_{q}, \llbracket \square \rrbracket_{q}$, which computes to the unit type when $q=0$ and the n th-approximation of T at $n+1$.
- Define $\mathrm{fix}_{T}:\left(\triangleright_{\square} T \rightarrow T\right) \rightarrow T$ (the Löb rule) by providing a witness using the "step-index".
- Define the lifting next ${ }_{T}:\left(T \rightarrow \triangleright_{\square} T\right)$, morally "delay".

Step-indexing as a forcing layer

Take $\mathbb{P} \triangleq \mathbb{N}$ with the standard order relation.

- Define $\nabla_{\square}: \square \rightarrow \square$ the "later" modality on \square in the forcing layer.
By translation we must provide a witness of $\Pi q \leq p . \Pi T: \llbracket \square \rrbracket_{q}, \llbracket \square \rrbracket_{q}$, which computes to the unit type when $q=0$ and the n th-approximation of T at $n+1$.
- Define $\mathrm{fix}_{T}:(\triangleright \square T \rightarrow T) \rightarrow T$ (the Löb rule) by providing a witness using the "step-index".
- Define the lifting next ${ }_{T}:\left(T \rightarrow \triangleright_{\square} T\right)$, morally "delay".

In the forcing layer, it becomes possible to reason with general fixpoints on types having the unfolding lemma:

$$
\operatorname{fix}_{\square} f=f\left(\operatorname{next}\left(\operatorname{fix}_{\square} f\right)\right)
$$

Issues

The setup is not very satisfactory though:

- Doubts about coherence of the whole translation.
- Tedious proofs involving rewriting appear when reasoning with these fixpoints.

A new hope

Interestingly the Curry-Howard isomorphism explains the difficulties with this translation.

Root of the failure

The usual forcing $[\cdot]_{p}$ translation is call-by-value.
That is, assuming (\mathbb{P}, \leq) has definitional laws:

$$
t \equiv_{\beta v} u \quad \text { implies } \quad[t]_{p} \equiv_{\beta}[u]_{p}
$$

where βv is generated by the rule:

$$
(\lambda x . t) V \longrightarrow_{\beta v} t\{x:=V\} \quad(V \text { a value })
$$

This problem is already here in the simply-typed case but less troublesome.

There is an easy Call-by-Push-Value decomposition of forcing.

There is an easy Call-by-Push-Value decomposition of forcing.

- Precomposing by the CBV decomposition we recover the usual forcing

There is an easy Call-by-Push-Value decomposition of forcing.

- Precomposing by the CBV decomposition we recover the usual forcing
- Precomposing by the CBN decomposition we obtain a new translation
- ... much closer to Krivine and Miquel's classical variant

CBN provides new abilities

You only have to change the interpretation of the arrow.

$$
\begin{array}{ll}
\text { CBV } & \llbracket \Pi x: A \cdot B \rrbracket_{p} \cong \Pi q \leq p \cdot \Pi x: \llbracket A \rrbracket_{q} \cdot \llbracket B \rrbracket_{q} \\
\text { CBN } & \llbracket \Pi x: A \cdot B \rrbracket_{p} \equiv \Pi\left(x: \Pi q \leq p \cdot \llbracket A \rrbracket_{q}\right) \cdot \llbracket B \rrbracket_{p}
\end{array}
$$

CBN provides new abilities

You only have to change the interpretation of the arrow.

$$
\begin{array}{ll}
\text { CBV } & \llbracket \Pi x: A \cdot B \rrbracket_{p} \cong \Pi q \leq p \cdot \Pi x: \llbracket A \rrbracket_{q} \cdot \llbracket B \rrbracket_{q} \\
\text { CBN } & \llbracket \Pi x: A \cdot B \rrbracket_{p} \equiv \Pi\left(x: \Pi q \leq p \cdot \llbracket A \rrbracket_{q}\right) \cdot \llbracket B \rrbracket_{p} \\
\text { CBN } & \llbracket x \rrbracket_{p} \equiv x p \mathrm{id}_{p}
\end{array}
$$

CBN provides new abilities

You only have to change the interpretation of the arrow.

$$
\begin{array}{ll}
\text { CBV } & \llbracket \Pi x: A \cdot B \rrbracket_{p} \cong \Pi q \leq p \cdot \Pi x: \llbracket A \rrbracket_{q} \cdot \llbracket B \rrbracket_{q} \\
\text { CBN } & \llbracket \Pi x: A \cdot B \rrbracket_{p} \equiv \Pi\left(x: \Pi q \leq p \cdot \llbracket A \rrbracket_{q}\right) \cdot \llbracket B \rrbracket_{p} \\
\text { CBN } & \llbracket x \rrbracket_{p} \equiv x p \mathrm{id}_{p}
\end{array}
$$

... and everything follows naturally (CBN is somehow a < free \gg construction).

Interpretation of CC_{ω}

Assuming that \mathbb{P} has definitional laws (for identity and composition), then [•] provides a non-trivial translation from $\mathbf{C C}_{\omega}$ into itself preserving typing and conversion.

This is to the best of our knowledge, the first effectful translation of CC_{ω}.

$$
\begin{aligned}
& {[]_{\sigma} \quad:=\lambda(q f: \sigma) . \Pi(r g: \sigma \cdot(q, f)) \text {. }} \\
& {\left[\square_{i}\right]_{\sigma} \quad:=\lambda(q f: \sigma) \cdot \Pi(r g: \sigma \cdot(q, f)) \cdot \square_{i}} \\
& {[x]_{\sigma} \quad:=x \sigma_{e} \sigma(x)} \\
& {[\lambda x: A \cdot M]_{\sigma}:=\lambda x:[A]_{\sigma}^{!} \cdot[M]_{\sigma \cdot x}} \\
& {[M N]_{\sigma} \quad:=[M]_{\sigma}[N]_{\sigma}^{!}} \\
& {[\Pi x: A \cdot B]_{\sigma}:=\lambda(q f: \sigma) \cdot \Pi x: \llbracket A \rrbracket_{\sigma \cdot(q, f)}^{!} \cdot \llbracket B \rrbracket_{\sigma \cdot(q, f) \cdot x}} \\
& {[A]_{\sigma} \quad:=[A]_{\sigma} \sigma_{e} \mathrm{id}_{\sigma_{e}}} \\
& {[M]_{\sigma}^{!} \quad:=\lambda(q f: \sigma) \cdot[M]_{\sigma \cdot(q, f)}} \\
& \llbracket A \rrbracket_{\sigma}^{!} \quad:=\Pi(q f: \sigma) \cdot \llbracket A \rrbracket_{\sigma \cdot(q, f)} \\
& \llbracket \mathbb{\rrbracket}_{p} \quad:=p: \mathbb{P} \\
& \llbracket \Gamma \rrbracket_{\sigma \cdot(q, f)}:=\llbracket \Gamma \rrbracket_{\sigma}, q: \mathbb{P}, f: \operatorname{Hom}\left(\sigma_{e}, q\right) \\
& \llbracket \Gamma, x: A \rrbracket_{\sigma \cdot x}:=\left[\Gamma \rrbracket_{\sigma}, x: \llbracket A\right]_{\sigma}^{!}
\end{aligned}
$$

Is the definitional side stronger?

This variant is motivated by a Curry-Howard stance.

- No categorical equivalent from the literature (?).
- Definitely not a presheaf construction!
- In particular, no monotonicity / restrictions
- Only known relative comes from Krivine and Miquel (also CH)
- Yet, still the same object in the simply-typed case.
- Can be used for NBE as well

What is this beast?

Technical issue: how can \mathbb{P} have definitional laws?

Yoneda to the rescue

Technical issue: how can \mathbb{P} have definitional laws?

Answer: using this one weird old Yoneda trick!

$$
(\mathbb{P}, \leq) \quad \mapsto \quad\left(\mathbb{P}_{\mathcal{Y}}, \leq \mathcal{Y}\right)
$$

$$
\begin{array}{ll}
\mathbb{P}_{\mathcal{Y}} & :=\mathbb{P} \\
p \leq \mathcal{Y} q & :=\Pi r: \mathbb{P} \cdot q \leq r \rightarrow p \leq r
\end{array}
$$

Yoneda lemma

- The category $\left(\mathbb{P}_{\mathcal{Y}}, \leq \mathcal{Y}\right)$ is equivalent to (\mathbb{P}, \leq) (assuming parametricity and functional extensionality).
- Furthermore, it has definitional laws as associativity of functions is on the nose in ITT.

Inductive types

Up to now, we only interpret the negative fragment $(\Pi+\square)$.

Inductive types

Up to now, we only interpret the negative fragment $(\Pi+\square)$.
Adapting to (positive) inductive types.
We just need to box all subterms!

$$
\begin{aligned}
& \llbracket \Sigma x: A \cdot B \rrbracket_{p}:=\quad \Sigma\left(x: \Pi q \leq p \cdot \llbracket A \rrbracket_{q}\right) \cdot\left(\Pi q \leq p \cdot \llbracket B \rrbracket_{q}\right) \\
& \llbracket A+B \rrbracket_{p} \quad:=\quad\left(\Pi q \leq p \cdot \llbracket A \rrbracket_{q}\right)+\left(\Pi q \leq p \cdot \llbracket B \rrbracket_{q}\right) \\
& \text { Inductive } \llbracket \mathbb{N} \rrbracket_{p}: \square:=[\mathbf{0}]: \llbracket \mathbb{N} \rrbracket_{p} \mid[\mathbf{S}]:\left(\Pi q \leq p \cdot \llbracket \mathbb{N} \rrbracket_{q}\right) \rightarrow \llbracket \mathbb{N} \rrbracket_{p}
\end{aligned}
$$

Dependent elimination

Yet, the translation does not interpret full dependent elimination.

$$
\begin{array}{ll}
\mathbb{N}_{\text {rec }} & \Pi(P: \square) . P \rightarrow(P \rightarrow P) \rightarrow \mathbb{N} \rightarrow P \\
\mathbb{N}_{\text {ind }} & \Pi(P: \mathbb{N} \rightarrow \square) \cdot P 0 \rightarrow(\Pi n: \mathbb{N} \cdot P n \rightarrow P(\mathrm{~S} n)) \rightarrow \Pi n: \mathbb{N} . P n
\end{array}
$$

Dependent elimination

Yet, the translation does not interpret full dependent elimination.

$$
\begin{array}{ll}
\mathbb{N}_{\text {rec }} & \Pi(P: \square) . P \rightarrow(P \rightarrow P) \rightarrow \mathbb{N} \rightarrow P \\
\mathbb{N}_{\text {ind }} & \Pi(P: \mathbb{N} \rightarrow \square) . P 0 \rightarrow(\Pi n: \mathbb{N} \cdot P n \rightarrow P(\mathrm{~S} n)) \rightarrow \Pi n: \mathbb{N} . P n
\end{array}
$$

Effects \rightsquigarrow Non-standard inductive terms (A well-known issue. See e.g. Herbelin's CIC + callcc)

Dependent elimination

Yet, the translation does not interpret full dependent elimination.

$$
\begin{array}{ll}
\mathbb{N}_{\text {rec }} & \Pi(P: \square) . P \rightarrow(P \rightarrow P) \rightarrow \mathbb{N} \rightarrow P \\
\mathbb{N}_{\text {ind }} & \Pi(P: \mathbb{N} \rightarrow \square) . P 0 \rightarrow(\Pi n: \mathbb{N} \cdot P n \rightarrow P(\mathrm{~S} n)) \rightarrow \Pi n: \mathbb{N} . P n
\end{array}
$$

Effects \rightsquigarrow Non-standard inductive terms (A well-known issue. See e.g. Herbelin's CIC + callcc)

Luckily there is a surprise solution coming from classical realizability.

Storage operators!

Storage operators

- They allow to prove induction principles in presence of callcc
- Essentially emulate CBV in CBN through a CPS
- Defined in terms of non-dependent recursion

$$
\begin{aligned}
& \theta_{\mathbb{N}}: \quad \mathbb{N} \rightarrow \Pi R: \square \cdot(\mathbb{N} \rightarrow R) \rightarrow R \\
& \theta_{\mathbb{N}}:= \\
& \mathbb{N}_{\text {rec }}(\lambda R k . k 0)(\lambda \tilde{n} R k . \tilde{n} R(\lambda n \cdot k(S n)))
\end{aligned}
$$

- They allow to prove induction principles in presence of callcc
- Essentially emulate CBV in CBN through a CPS
- Defined in terms of non-dependent recursion

$$
\begin{aligned}
& \theta_{\mathbb{N}}: \quad \mathbb{N} \rightarrow \Pi R: \square \cdot(\mathbb{N} \rightarrow R) \rightarrow R \\
& \theta_{\mathbb{N}}:=\quad \mathbb{N}_{\text {rec }}(\lambda R k \cdot k 0)(\lambda \tilde{n} R k \cdot \tilde{n} R(\lambda n \cdot k(S n)))
\end{aligned}
$$

- Trivial in CIC: CIC $\vdash \Pi n R k . \quad \theta_{\mathbb{N}} n R k={ }_{R} k n$
- The above propositional η-rule is negated by the forcing translation
- But it interprets a restricted dependent elimination!
- They allow to prove induction principles in presence of callcc
- Essentially emulate CBV in CBN through a CPS
- Defined in terms of non-dependent recursion

$$
\begin{aligned}
& \theta_{\mathbb{N}}: \quad \mathbb{N} \rightarrow \Pi R: \square \cdot(\mathbb{N} \rightarrow R) \rightarrow R \\
& \theta_{\mathbb{N}}:= \\
& \mathbb{N}_{\text {rec }}(\lambda R k . k 0)(\lambda \tilde{n} R k . \tilde{n} R(\lambda n \cdot k(S n)))
\end{aligned}
$$

- Trivial in CIC: CIC $\vdash \Pi n R k . \quad \theta_{\mathbb{N}} n R k={ }_{R} k n$
- The above propositional η-rule is negated by the forcing translation
- But it interprets a restricted dependent elimination!
$\Pi P . P 0 \rightarrow\left(\Pi n: \mathbb{N} . P n \rightarrow \theta_{\mathbb{N}}(\mathrm{S} n) \square P\right) \rightarrow \Pi n: \mathbb{N} . \theta_{\mathbb{N}} n \square P$

Implementation \& examples

- A plugin for Coq generating translated terms

A truly definitional translation!

Implementation \& examples

- A plugin for Coq generating translated terms

A truly definitional translation!

- A handful of independence results and usecases
\rightsquigarrow Preserves UIP and functional extensionality
\rightsquigarrow Generate anomalous types that negate univalence
\rightsquigarrow Preserves (a simple version of) univalence for modal types
\rightsquigarrow Step indexing (FRP, < fuel trick >)
\rightsquigarrow Give some intuition for the cubical model

Implementation \& examples

- A plugin for Coq generating translated terms

A truly definitional translation!

- A handful of independence results and usecases
\rightsquigarrow Preserves UIP and functional extensionality
\rightsquigarrow Generate anomalous types that negate univalence
\rightsquigarrow Preserves (a simple version of) univalence for modal types
\rightsquigarrow Step indexing (FRP, < fuel trick >)
\rightsquigarrow Give some intuition for the cubical model
- Demo

What remains to be done

- Recover a propositional η-rule by using parametricity
- Understanding the cubical model in CBN.
- Design a general theory of CIC + effects using storage operators
- The next 700 translations of CIC into itself, degenerate translations. E.g. breaking parametricity with built-in quote operators.
- The Independence of Markov's Principle in Type Theory. T. Coquand, B. Mannaa, FSCD 2016
- Forcing as a Program Transformation, A. Miquel, LICS 2011.
- The Definitional Side of Forcing - G. Jaber, G. Lewertowski, P.-M. Pédrot, M. Sozeau, N. Tabareau, LICS'16
- Forcing in Type Theory - G. Jaber, M. Sozeau \& N. Tabareau, LICS'12
https://github.com/CoqHott/coq-forcing

