Principal equivalence relations

Egbert Rijke

Carnegie Mellon University erijke@andrew.cmu.edu

July 27th 2016, Leeds

Overview

- ▶ Definition of $\mathbb{R}P^n$.
- ▶ Definition of $\mathbb{C}\mathsf{P}^n$.
- Principal H-spaces ('infinitely coherent groups').
- ▶ The general projective space construction.
- ▶ The principal H-space structure of loop spaces.
- Principal H-spaces are pointed connected types.

$$\mathbb{R}\mathsf{P}: \mathbb{N}_{-1} \to \mathsf{U}$$

$$\mathsf{cov}_2: \prod_{(n:\mathbb{N}_{-1})} \mathbb{R}\mathsf{P}^n \to \mathsf{U}_2$$

▶ For each $n : \mathbb{N}$ there is an equivalence

$$\mathbb{S}^n \simeq \sum_{(x:\mathbb{R}\mathsf{P}^n)} \mathsf{cov}_2^n(x).$$

We obtain the long exact sequence

$$\cdots \to \pi_{k+1}(\mathbb{R}\mathsf{P}^n) \to \pi_k(\mathbf{2}) \to \pi_k(\mathbb{S}^n) \to \pi_k(\mathbb{R}\mathsf{P}^n) \to \cdots$$

Since $\pi_k(\mathbf{2}) = 0$ for $k \ge 1$, we get the isomorphisms

$$\pi_k(\mathbb{S}^n) = \pi_k(\mathbb{R}\mathsf{P}^n)$$

for k > 2.

► The map

$$\mathsf{cov}_2^\infty : \mathbb{R}\mathsf{P}^\infty \to \mathsf{U}_2$$

is an equivalence.

$$\mathcal{O}_{\mathbb{S}^1}: \mathsf{U}_{\mathbb{S}^1} o \mathsf{U}$$

such that $\sum_{(A:\mathsf{U}_{\odot 1})} \mathcal{O}_{\mathbb{S}^1}(A) \times A$ is contractible

$$\begin{split} \mathbb{C}\mathsf{P} : \mathbb{N}_{-1} \to \mathsf{U} \\ \mathsf{cov}_{\mathbb{S}^1} : \prod_{(n:\mathbb{N}_{-1})} \mathbb{C}\mathsf{P}^n \to \mathsf{U}_{\mathbb{S}^1} \\ \mathsf{orient}_{\mathbb{S}^1} : \prod_{(n:\mathbb{N}_{-1})} \prod_{(x:\mathbb{C}\mathsf{P}^n)} \mathcal{O}_{\mathbb{S}^1}(\mathsf{cov}^n_{\mathbb{S}^1}(x)) \end{split}$$

▶ For each $n : \mathbb{N}$ there is an equivalence

$$\mathbb{S}^{2n+1} \simeq \sum_{(x:\mathbb{CP}^n)} \operatorname{cov}_{\mathbb{S}^1}^n(x).$$

We obtain the long exact sequence

$$\cdots \to \pi_{k+1}(\mathbb{C}\mathsf{P}^n) \to \pi_k(\mathbb{S}^1) \to \pi_k(\mathbb{S}^{2n+1}) \to \pi_k(\mathbb{C}\mathsf{P}^n) \to \cdots$$

Since $\pi_k(\mathbb{S}^1) = 0$ for $k \geq 2$, we get the isomorphisms

$$\pi_k(\mathbb{S}^{2n+1}) = \pi_k(\mathbb{C}\mathsf{P}^n)$$

for $k \geq 3$.

The map

$$\mathsf{cov}^\infty_{\mathbb{S}^1}: \mathbb{C}\mathsf{P}^\infty o \sum_{(A:\mathsf{U}_{\mathbb{S}^1})} \mathcal{O}_{\mathbb{S}^1}(A)$$

is an equivalence.

Definition

A principal H-space structure on a type X with base point $\mathbf{1}_X$, consists of

- 1. a type family $\mathcal{O}_X: \mathsf{U}_X \to \mathsf{U}$ of orientations,
- 2. a canonical orientation $o_X : \mathcal{O}_X(X)$,

such that the type

$$\sum_{(A:U_X)} \mathcal{O}_X(A) \times A$$

is contractible.

The classifying type of a principal H-space X is defined to be

$$\mathbf{B}X :\equiv \sum_{(A:\mathsf{U}_X)} \mathcal{O}_X(A).$$

This is a pointed connected type with loop space X.

The general projective space construction

$$\mathsf{P}(X): \mathbb{N}_{-1} \to \mathsf{U}$$
 $\mathsf{cov}_X: \prod_{(n:\mathbb{N}_{-1})} \mathsf{P}(X)^n \to \mathsf{U}_X$
 $\mathsf{orient}_X: \prod_{(n:\mathbb{N}_{-1})} \prod_{(x:\mathsf{P}(X)^n)} \mathcal{O}_X(\mathsf{cov}_X^n(x))$

For each $n : \mathbb{N}$ there is an equivalence

 $X^{*(n+1)} \simeq \sum_{(x:P(X)^n)} \operatorname{cov}_X^n(x).$

$$X \hookrightarrow \sum_{(x:P(X)^n)} cov_X(x)$$

We obtain the long exact sequence

 $\cdots \to \pi_{k+1}(\mathsf{P}(X)^n) \to \pi_k(X) \to \pi_k(X^{*(n+1)}) \to \pi_k(\mathsf{P}(X)^n) \to \cdots$

 $cov_X^\infty : P(X)^\infty \to \mathbf{B}X$

$$X^{*(n+1)} \simeq \sum_{(x:P(X)^n)}$$

► The map

is an equivalence.

Lemma

Any loop space can be given the structure of a principal H-space.

Proof (Definition of the type of orientations).

Define $P: X_{x_0} \to \mathsf{Type}$ by $P(x) :\equiv (x = x_0)$. Then we have

$$\Omega(X) \longrightarrow \mathbf{1} \longrightarrow \tilde{U}_{X}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbf{1} \longrightarrow_{X_{0}} X_{X_{0}} \longrightarrow_{P} U_{X}$$

Now take

$$\mathcal{O}_X(A) :\equiv \mathsf{fib}_P(A)$$
 $o_X(\Omega(X)) :\equiv \langle x_0, \mathsf{refl}_{\Omega(X)} \rangle$

Proof of the contractibility property.

We have a commuting triangle

Therefore, the following are equivalent

- ▶ $\sum_{(A:U_X)} \mathcal{O}_X(A) \times A$ is contracitble
- $ightharpoonup \sum_{(x:X_{x_0})} P(x)$ is contractible

The latter is obvious.

Theorem

The map **B** from principal H-spaces to the type of (small) pointed connected types is an equivalence.

Overview

- Principal equivalence relations ('infinitely coherent type-valued equivalence relations').
- ▶ The quotient approximation construction.
- ▶ The (modified) join construction.

Definition

A principal equivalence relation on a type A consists of

- ▶ A binary relation $R: A \to (A \to U)$ with a proof $\rho: \prod_{(a:A)} R(a,a)$ of reflexivity,
- A type family

$$\mathcal{O}_R:\mathsf{im}(R)\to\mathsf{U}$$

of *R*-orientations on the predicates $P: A \rightarrow U$ in the image of *R*, with a canonical *R*-orientation

$$o_R:\prod_{(a:A)}\mathcal{O}_R(R(a)),$$

such that the type

$$\sum_{(P:\operatorname{im}(R))} \mathcal{O}_R(P) \times P(a)$$

is contractible for every a: A.

▶ A principal equivalence relation on 1 is the same thing as a principal H-space.

Example

Let A be a type, and let \bigcirc be a modality. Define

$$R(a,b) :\equiv \bigcirc (a=b)$$

Then the type

$$\sum_{(P:\operatorname{im}(R))} P(a)$$

is contractible for any a:A. So we may take $\mathcal{O}_R(P):\equiv \mathbf{1}$.

Definition

Given a principal equivalence relation R on A, we define the quotient

$$A/R :\equiv \sum_{(P:\mathsf{im}(R))} \mathcal{O}_R(P).$$

We define the quotient map $q_R : A \rightarrow A/R$ by

$$q_R(a) :\equiv \langle q'_R(a), o_R(a) \rangle.$$

Lemma

Given a principal equivalence relation R on A, we have by the encode-decode method an equivalence

$$(q_R(a) =_{A/R} q_R(b)) \simeq R(a,b)$$

for any a, b: A.

$$\begin{array}{c|c}
\sum_{(a:A)} \sum_{(x:X)} Y(x,a) \xrightarrow{\pi_2} X \\
 & \downarrow \\
 & A \xrightarrow{\pi_1} A +_Y X \\
 & \downarrow \\
 & A \xrightarrow{(Y',o_{Y'})} A \xrightarrow{(Y,o_{Y'})} \mathcal{O}_R(P)
\end{array}$$

This defines an endomorphism on the type

$$\sum_{(X:\mathsf{U})} \sum_{(Y:X\to\mathsf{im}(R))} \prod_{(x:X)} \mathcal{O}_R(Y(x)).$$

Via this endomorphism, we define the quotient approximation sequence

starting at $[A/R]_0 :\equiv A$ (or at $[A/R]_{-1} :\equiv \mathbf{0}$).

▶ Define
$$[I_R]_n :\equiv \operatorname{pr}_1 \circ [q_R]_n : [A/R]_n \to A \to U$$

▶ For each $n : \mathbb{N}$ and each b : A, there is an equivalence

 $[q_R]_{\infty}: [A/R]_{\infty} \to \sum_{(P:\operatorname{im}(R))} \mathcal{O}_R(P)$

For each
$$n : \mathbb{N}$$
 and each $b : A$, there is an equivalence

 $\textstyle \sum_{(x:[A/R]_n)} [I_R]_n(x,a) \simeq \left(\sum_{(a:A)} R(a,b)\right)^{*(n+1)}.$

The map

is an equivalence.

We obtain a map Q_A from the type of principal equivalence relations on A to the type of surjective maps out of A, with small codomains.

Theorem

For each type A, the map Q_A is an equivalence.

The join of maps

Definition

For any $f: A \rightarrow X$, we define a sequence

The function f^{*n} is called the *n*-th join-power of f.

Construction.

We take $A_0 :\equiv \mathbf{0}$, with the unique map into X. Then we define $A_{n+1} :\equiv A_n *_X A$, and $f^{*(n+1)} :\equiv f^{*n} *_F f$.

- In the real projective case:
 - $ightharpoonup \mathbb{R}\mathsf{P}^{n+1} = \mathbb{R}\mathsf{P}^n *_{\mathbb{P}\mathsf{P}\infty} \mathbf{1}$. and

 $ightharpoonup cov_2^n = (cov_2^0)^{*(n+1)}$

- ▶ In the complex projective case:
 - $ightharpoonup \mathbb{C}\mathsf{P}^{n+1} = \mathbb{C}\mathsf{P}^n *_{\mathbb{C}\mathsf{P}^\infty} \mathbf{1}$, and $\qquad \qquad \mathsf{cov}_{\scriptscriptstyle \otimes 1}^n = (\mathsf{cov}_{\scriptscriptstyle \otimes 1}^0)^{*(n+1)}$
- ▶ In the general projective case:
 - - $P(X)^{n+1} = P(X)^n *_{BX} 1$, and $cov_{x}^{n} = (cov_{x}^{0})^{*(n+1)}$

Theorem

The sequential colimit $f^{*\infty}$ is an embedding, and has the universal property of the image inclusion

$$A \rightarrow \operatorname{im}(f) \rightarrow X$$

Corollary

The sequential colimit of the type sequence

$$\mathbf{0} \longrightarrow A \xrightarrow{\mathsf{inr}} A * A \xrightarrow{\mathsf{inr}} A * (A * A) \xrightarrow{\mathsf{inr}} \cdots$$

is the propositional truncation $||A||_{-1}$.

Definition

A type X, which may itself be large, is said to be locally small if for all x, y : X, there is a type x = 'y : U and an equivalence of type

$$(x = y) \simeq (x =' y).$$

Examples:

- all types in U,
- ▶ the universe U.
- mere propositions of any size,
- ▶ for any A: U and any locally small type X, the type $A \rightarrow X$.

The modified join of maps into locally small X

Take
$$A \times_X' B :\equiv \sum_{(a:A)} \sum_{(b:B)} f(a) =' g(b)$$
.

Theorem

Assumptions:

- ▶ U is a univalent universe closed under pushouts,
- ▶ let X be a locally small type,
- ▶ *let* $f: A \rightarrow X$ *with* A: U,

Then we can construct a type $\operatorname{im}'(f)$: U, a surjective map $q_f': A \to \operatorname{im}'(f)$, and an embedding $i_f': \operatorname{im}'(f) \to X$ such that the triangle

commutes, with the universal property of the image inclusion of f.

- ► For any modality ○, the modality of ○-separated types.
- ▶ *n*-truncation in any univalent universe closed under pushouts.
- $ightharpoonup \mathbb{R}\mathsf{P}^n$, $\mathbb{C}\mathsf{P}^n$, ...