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Two Kinds of Type Theory

Two traditions in type theory, both embodied by Martin-Löf:

• Formal, or axiomatic, as in ITT and HoTT.

• Computational, or semantic, as in CMCP.

Most work in HoTT has taken place in the formal setting.

• Univalence Axiom, subsuming Function Extensionality.

• Higher Inductive Types, supporting truncation, etc.
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Formal Type Theory
Martin-Löf; Coquand; HoTT

Formal type theory is inductively defined by rules:

• Formation: Γ ` A type, Γ ` M : A.

• Definitional equivalence: Γ ` A ≡ B, Γ ` M ≡ N : A.

Axioms and rules are chosen to ensure:

• Not non-constructive, eg no unrestricted LEM.

• Formal correspondence to logics, eg HA, IHOL.

• Decidability of all assertions.

Choice of rules can be delicate, eg what is definitional equivalence?
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Martin-Löf; Coquand; HoTT

Formal type theory is inductively defined by rules:

• Formation: Γ ` A type, Γ ` M : A.

• Definitional equivalence: Γ ` A ≡ B, Γ ` M ≡ N : A.

Axioms and rules are chosen to ensure:

• Not non-constructive, eg no unrestricted LEM.

• Formal correspondence to logics, eg HA, IHOL.

• Decidability of all assertions.

Choice of rules can be delicate, eg what is definitional equivalence?



Formal Type Theory

Emphasis is on formal proof.

• Γ ` M : A encodes proof checking.

• Tactics and decision procedures find proofs.

Inductive definition yields a mapping out property:

• Assign meaning to types and terms.

• Associate invariants with types, eg normalization.

Adding axioms disrupts these properties!
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Semantic Type Theory
Martin-Löf; Constable, et al

Meaning explanations define types and elements semantically:

• Computational: as programs with deterministic dynamics.

• Mathematical: using inchoate concepts of set and function.

Computational meaning explanation: type theory as a prog lang.

• Types are behavioral specifications.

• Types and objects are programs that execute.

Inverts conceptual order compared to formal type theory:

• Type theory as a theory of truth.

• Proof theory accesses the truth.



Semantic Type Theory
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Computational Meaning Explanation
Martin-Löf: Constr. Math. and Comp. Prog.

Start with computation on closed expressions (types and terms):

• Transition: M 7−→ M ′, one step of execution.

• Termination: M val is canonical/complete.

Define exact equality of closed types and terms:

• Type equality: A
.

= B type [Ψ].

• Term equality in a type: M
.

= N ∈ A [Ψ].

Extend to open forms by functionality aka extensionality:

• Types: a1:A1, . . . , an:An � A
.

= B type [Ψ].

• Terms: a1:A1, . . . , an:An � M
.

= N ∈ A [Ψ].
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Computational Meaning Explanation

Judgments are not intended to be decidable.

• Quantifier complexity is arbitrarily high, not merely r.e.

• Specifies execution behavior, not syntactic formation.

Two essential moves for higher-dimensionality:

• Judgmental account of identifications.

• Exact equality of types and elements at all dimensions.
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Cubical Programming Language
Licata, Brunerie; Coquand, et al.

Syntax is organized cubically:

• Points correspond to ordinary terms and types.

• Lines represent identifications.

• Squares represent homotopies, etc.

Cartesian cubes are specified by a dimension context, Ψ:

• Finite set of dimension variables x , y , z , . . . .

Substitutions ψ : Ψ′ → Ψ send x ∈ Ψ to ψ(x) = 0/1/x ′ ∈ Ψ′.
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Cubical Programming Language

Substitutions define the aspects of a cube E :

• Faces: E 〈0/x〉, E 〈1/x〉.
• Diagonals: E 〈x ′, x ′/x , y〉.
• Degeneracy: silent/implicit.

y

x
E 〈0/x〉〈0/y〉

E 〈0/x〉〈1/y〉

E 〈1/x〉〈0/y〉

E 〈1/x〉〈1/y〉

E〈0/x〉 E〈1/x〉

E〈0/y〉

E〈1/y〉

E



Cubical Programming Language

Conventional functional programming constructs:

• Booleans, pairs, functions.

• Lazy dynamics (weak head reduction)

Unconventional functional programming constructs:

• Circle: S1, base, loopx ,S1-elima.A(M;Mb, x .Ml).

• Negation: notx , a type line, and glueing, notelx(M).

• Kan operations: coe, hcom.

The Kan operations are computational content of the Kan
condition (cf, LB14, CCHM16).



Cubical Programming Language

Conventional functional programming constructs:

• Booleans, pairs, functions.

• Lazy dynamics (weak head reduction)

Unconventional functional programming constructs:

• Circle: S1, base, loopx ,S1-elima.A(M;Mb, x .Ml).

• Negation: notx , a type line, and glueing, notelx(M).

• Kan operations: coe, hcom.

The Kan operations are computational content of the Kan
condition (cf, LB14, CCHM16).



Cubical Programming Language

Conventional functional programming constructs:

• Booleans, pairs, functions.

• Lazy dynamics (weak head reduction)

Unconventional functional programming constructs:

• Circle: S1, base, loopx ,S1-elima.A(M;Mb, x .Ml).

• Negation: notx , a type line, and glueing, notelx(M).

• Kan operations: coe, hcom.

The Kan operations are computational content of the Kan
condition (cf, LB14, CCHM16).



Kan Operations

Coercion along a type line: coer r ′
x .A (M).

• Heterogeneous along line x .A.

• Evaluates A to effect coercion from A〈r/x〉 to A〈r ′/x〉.

Composition: hcom
−⇀ri
A (r  r ′,M;

−−⇀
y .Nε

i ).

• Homogeneous: within type, not line, A.

• The start r and end r ′ dimensions.

• The cap M is the starting cube.

• The tubes
−−⇀
y .Nε

i with extent −⇀ri in dimension −⇀yi .

• Evaluates A to define composite, which may or may not be
the hcom itself.
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Two-Dimensional Compositions

y

x ·

N0〈1/y〉

·

N1〈1/y〉

N0 N1

M

hcomx
A(0 0,M; y .N0, y .N1)
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Two-Dimensional Compositions

y
z

x ·

N0〈1/y〉

·

N1〈1/y〉

N0 N1

M

hcomx
A(0 z ,M; y .N0, y .N1)



Cubical Meaning Explanation

Explanation proceeds in stages:

• Define the canonical types and their elements at each
dimension Ψ.

• Define pre-types to be cubical, ie with coherent aspects.

• Define types to be Kan pre-types.

The main criteria for a higher type system:

• All aspects of a type or element must be types or elements.

• Taking aspects must commute with evaluation.

• Equal types must have the same element equality.

• Equal types must be equally Kan.
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Cubical Type Systems

A cubical type system consists of a family of per’s:

• Canonical types: A0 ≈Ψ B0.

• Canonical elements of a canonical type: M0 ≈Ψ
A0

N0.

• Type equality: If A0 ≈Ψ B0, then ≈Ψ
A0

is ≈Ψ
B0

.

Extend to general closed expressions by evaluation:

• A ∼Ψ B iff A 7−→∗ A0 and B 7−→∗ B0 and A0 ≈Ψ B0.

• M ∼Ψ
A N iff M 7−→∗ M0, N 7−→∗ N0, A 7−→∗ A0, and

M0 ≈Ψ
A0

N0.
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Pre-Types: Coherent Aspects

Pre-types A pretype [Ψ] must have coherent aspects:

• Let ψ1 : Ψ1 → Ψ and ψ2 : Ψ2 → Ψ1.

• Let Aψ1 7−→∗ A1 val, and A1ψ2 7−→∗ A2 val, and
Aψ2ψ1 7−→∗ A12 val.

• Require:

A A1

A12 ≈Ψ2 A2

ψ1

ψ2ψ1ψ2

Similarly for exact equality of types and of elements:
substitute-then-evaluate is functorial.
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Pre-Types and Types

A pretype [Ψ] is cubical: its values have coherent aspects:

• If ψ : Ψ′ → Ψ and M ≈Ψ′
Aψ N, then M

.
= N ∈ Aψ [Ψ′].

A type is a Kan pre-type:

• Supports coercion and composition.

• Certain equational requirements are met.
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Kan Conditions for Coercion

For any ψ : (Ψ′, x)→ Ψ, if

M ∈ Aψ〈r/x〉 [Ψ′],

then
coer r ′

x .Aψ(M) ∈ Aψ〈r ′/x〉 [Ψ′].

For any ψ : (Ψ′, x)→ Ψ, if

M ∈ Aψ〈r/x〉 [Ψ′],

then
coer r

x .Aψ(M)
.

= M ∈ Aψ〈r/x〉 [Ψ′].
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Kan Conditions for Composition

For any ψ : Ψ′ → Ψ, if

• M ∈ Aψ [Ψ′],

• Nε
i
.

= Nε′
j ∈ Aψ [Ψ′, y | ri = ε, rj = ε′] (all i , j , ε, and ε′)

• Nε
i 〈r/y〉

.
= M ∈ Aψ [Ψ′ | ri = ε] (all i and ε)

then

• hcom
−⇀ri
Aψ(r  r ′,M;

−−⇀
y .Nε

i ) ∈ Aψ [Ψ′].

• hcom
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Aψ(r  r ,M;
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i )
.

= M ∈ Aψ [Ψ′].

• hcom
−⇀ri
Aψ(r  r ′,M;

−−⇀
y .Nε

i )
.

= Nε
i 〈r ′/y〉 ∈ Aψ [Ψ′] if ri = ε.

Constraints limit applicable substitutions; conditions can be
vacuous.
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• Certain hcom’s are values.

• Could also define a strict variant.

The dynamics of the conditional accounts for

• true and false, as usual.

• hcom’s that are values.
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Boolean Dynamics

bool val

−⇀ri = x1, . . . , xi−1, ε, ri+1, . . . , rn

hcom
−⇀ri
bool(r  r ′,M;

−−⇀
y .Nε

i ) 7−→ Nε
i 〈r ′/y〉

r = r ′

hcomx1,...,xn
bool (r  r ′,M;

−−⇀
y .Nε

i ) 7−→ M true val false val

r 6= r ′

hcomx1,...,xn
bool (r  r ′,M;

−−⇀
y .Nε

i ) val



Boolean Dynamics

M 7−→ M ′

ifa.A(M;T ,F ) 7−→ ifa.A(M ′;T ,F ) ifa.A(true;T ,F ) 7−→ T

ifa.A(false;T ,F ) 7−→ F

r 6= r ′ H = hcomx1,...,xn
bool (r  z ,M;

−−⇀
y .Nε

i )

ifa.A(hcomx1,...,xn
bool (r  r ′,M;

−−⇀
y .Nε

i );T ,F )
7−→

comx1,...,xn
z.A[H/a](r  r ′, ifa.A(M;T ,F );

−−−−−−−−−−−⇀
y .ifa.A(Nε

i ;T ,F ))

coer r ′
x .bool(M) 7−→ M



Canonical Booleans

A CTS has booleans if bool ≈Ψ bool and ≈Ψ
bool is least s.t.

• true ≈Ψ
bool true,

• false ≈Ψ
bool false, and

• hcom
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bool(r  r ′,M;

−−⇀
y .Nε

i ) ≈Ψ,x
bool hcom

−⇀xi
bool(r  r ′,O;

−−⇀
y .Pεi )

when

• r 6= r ′,
• M

.
= O ∈ bool [Ψ],

• Nε
i
.

= Nε′

j ∈ bool [Ψ, y | xi = ε, xj = ε′] for all i , j , ε, ε′,
• Nε

i
.

= Pε
i ∈ bool [Ψ, y | xi = ε] for all i , ε, and

• Nε
i 〈r/y〉

.
= M ∈ bool [Ψ | xi = ε] for all i , ε.

Guarantees canonicity for closed points in bool: all evaluate to
either true or false.
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Not as a Type Line

Define notx as a type line between bool and bool.

• Given by negation (swapping) as a (strict) equivalence.

• Example of univalence principle.

The term notelx(M) ∈ notx [Ψ, x ] is a use of gluing [CCHM16]:
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·

bool

not(−) id
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notx
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Other Types Considered

Identification type Idx .A(M,N) is dimension shift.

• Same as LB14 and CCHM16, but not HoTT.

• Requires multiple tubes in hcom.

• Should be possible to define based path type, etc.

The circle S1 is straightforward (no worse than bool).

Dependent function and product types (Pi’s and Sigma’s) with full
universal properties.
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Whither Proof Theory?

Validates expected formal rules.

• NuPRL rules for given constructs are valid.

• LB14 rules for Kan cubical type theories are valid.

May be seen as cubical extensional realizability interpretation.

• Elicits computational content of proofs.

• Entails canonicity: Boolean points evaluate to true or false.

• Cubical intensional realizability via open terms?

But why limit attention to these formal theories?
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There is more to type theory than just known formal logics.

• Richer notions of computation: partiality, non-determinism,
recursive types, exceptions, state, . . . . [Constable, et al.]

• Internalize exact equality by handling pre-types as well as
types, a la VV’s HTS.

Computational higher type theory as a programming language?

• Agda syntax and checking, but with a dynamics.

• Idris for verified programming.

Computation model induces dynamics of explicitly typed languages.
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Ongoing and Future Work

Full account of univalence for all types.

• Not tied to a universe (which are only for size issues).

• Currently exploring glueing [CCHM].

• Are cartesian cubes workable? (So far, so good.)

Implementation in Sterling’s RedPRL (redprl.org).

• NuPRL-like refinement rules.

• Richer notion of tactics.

• Name generation is primitive (cf continuity principle).
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