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SPH: Historical Overview
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Ø Additions to SPH throughout time
Ø Fluid dynamics
Ø Gravity (in the original version, but not always included)
Ø Radiation
Ø Magnetic fields
Ø Multi-fluid physics
Ø One-fluid physics
Ø Pressure-less particles

Ø Primary reference: D. Price.  Feb 2012.  
Smoothed particle hydrodynamics and magnetohydrodynamics .  J Comp Phys. 759, 231.



SPH: Applications
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t=108400 yrs

sphNG dualSPHyiscs (unknown)
https://www.youtube.com/watch?v=B8mP9E75D08

Astrophysics                                 Engineering                                 Gaming/Movies



SPH: SPHERIC: Annual meeting
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Ø SPHERIC: European Research Community of all things SPH 
(mostly engineering, some astrophysics)



Phantom
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Ø Publically available at 
https://phantomsph.bitbucket.io

Ø Reference:
D. J. Price, J. Wurster, C. Nixon, 
T. S. Tricco, and 22 others. 
(arXiv:1702.03930)

Ø Contains only the ``best” algorithms
Ø e.g. one integration scheme, one artificial 

viscosity algorithm, etc...
Ø Algorithms can be turned off/on as required, 

and are fully parameterisable



Phantom
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Ø Publically available at 
https://phantomsph.bitbucket.io

Ø Reference:
D. J. Price, J. Wurster, C. Nixon, 
T. S. Tricco, and 22 others. 
(arXiv:1702.03930)

• Turbulence
(e.g. Tricco, Price & Federrath 2016)

• Test problems
• Star formation (including non-ideal MHD)

(e.g. Wurster, Price & Bate 2016, 2017)



SPH vs Grid: Dividing the domain
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Ø Given a domain, how do we divide it up?
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SPH vs Grid: Dividing the domain: Grid
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Ø Where are the characteristics calculated?
Ø Eulerian Grid

Ø Cells of well-defined position and volume
Ø Evolve scalars at cell-centres
Ø Evolve Vectors at cell interfaces
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Grid from Zeus2D (Stone & Norman, 1992)
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SPH vs Grid: Dividing the domain: SPH
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Ø Given a domain, how do we divide it up?
Ø Lagrangian particles

Ø Each particle has a fixed mass 
Ø Characteristics are calculated 

at the particles’ locations
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SPH vs Grid: Dividing the domain: SPH
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Ø How do we distribute the initial particles for 
uniform density (top)? For centrally condensed (bottom)?  Does it matter (Morris, 1996)?

http://journals.cambridge.org Downloaded: 05 Jan 2016 IP address: 130.194.20.173

Optimal SPH Initial Conditions 3

Figure 1. Popular configurations for setting up spatially uniform SPH initial conditions. From the top-left corner to the bottom right: cubic lattice, cubic
close packing, hexagonal close packing, quaquaversal tiling, random configuration, concentrical shells, gravitational glass, and the new WVT approach. All
examples contain approximately the same number of particles in the sphere (22 000). One quadrant of the sphere is cut out to allow a view into the inner
configuration. Colours change along the z-axis simply to show depth.

3.1 Spatially uniform distributions

The following methods are capable of generating spatially
uniform particle configurations.

3.1.1 Cubic lattice
Probably the simplest and fastest way to set up a uniform
particle distribution is to arrange them on a cubic lattice.
This method received early widespread use in both SPH

(Monaghan 1992) and N-body simulations (Efstathiou et al.
1985). One of the obvious problems with this method is that it
has very pronounced preferred directions along the x, y, and z
axes and their diagonals, as can easily be seen in the upper-left
example in Figure 1. In addition, the cubic lattice structure is
not a stable equilibrium configuration when the particles are
perturbed (Morris 1996; Lombardi et al. 1999), as there are
other more compact particle configurations that are energet-
ically favourable, such as cubic or hexagonal close-packed
arrangements.

PASA, 32, e048 (2015)
doi:10.1017/pasa.2015.50

Diehl, Rockefeller, Fryer, Riethmiller & Statler (2015); particle size represents spacing/volume
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The following methods are capable of generating spatially
uniform particle configurations.
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Probably the simplest and fastest way to set up a uniform
particle distribution is to arrange them on a cubic lattice.
This method received early widespread use in both SPH

(Monaghan 1992) and N-body simulations (Efstathiou et al.
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other more compact particle configurations that are energet-
ically favourable, such as cubic or hexagonal close-packed
arrangements.

PASA, 32, e048 (2015)
doi:10.1017/pasa.2015.50

http://journals.cambridge.org Downloaded: 05 Jan 2016 IP address: 130.194.20.173

4 Diehl et al.

Figure 2. Popular configurations for setting up spatially adaptive SPH initial conditions. From the top-left corner to the bottom right: stretched cubic lattice,
stretched cubic close packing, stretched hexagonal close packing, stretched quaquaversal tiling, random configuration, concentrical shell setup, stretched
gravitational glass, and the new WVT approach. All examples contain approximately the same number of particles in the sphere (22 000), and the particles’
sizes reflect the desired particle spacing. One quadrant of the sphere is cut out to allow a view into the inner configuration. Colours change along the z-axis
simply to show depth.

3.1.2 Cubic close-packed lattice
A more compact lattice structure is produced when one in-
serts an additional particle into the centre of each of the six
faces of the cubes in the cubic lattice. This results in the well-
studied cubic close packing (CCP) configuration, also known
as face-centred CCP (Figure 1, top centre panel). This con-
figuration is one of the optimal ways to pack uniform spheres
together, with a packing density of 74%. Similar to the cu-

bic lattice, it has the problem of having preferred directions
along the principal axes and diagonals of the lattice, and
along multiple other planes in which particles are arranged
in a hexagonal grid. However, these preferred direction are
much less pronounced than for the cubic lattice configura-
tion. The simplest way to construct this configuration is to
start with a plane with spheres in a hexagonal configuration
(plane A), and lay on top another such plane (B) so that the

PASA, 32, e048 (2015)
doi:10.1017/pasa.2015.50
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Ø Density summation

Ø Where
Ø N is number of neighbours
Ø mb is particle mass
Ø W is smoothing kernel

Ø Simplest kernel is a Gaussian:

SPH: Density
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Ø How is density calculated?

The second approach (Fig. 1b) is to remove the mesh entirely and instead calculate the density based on
a local sampling of the mass distribution, for example in a sphere centred on the location of the sampling
point (which may or may not be the location of a particle itself). The most basic scheme would be to divide
the total mass by the sampling volume, i.e.,

⇢(r) =

P
Nneigh

b=1 m
b

4
3⇡R

3
. (1)

The problem of resolving clustered/sparse regions can be easily addressed in this method by adjusting the
size of the sampling volume according to the local number density of sampling points, for example by
computing with a fixed “number of neighbours” for each particle – as shown in the Figure. However, this
leads to a very noisy estimate, since the density estimate will be very sensitive to whether a distant particle
on the edge of the volume is “in” or “out” of the estimate (with �⇢ / 1/N

neigh

for equal mass particles). This
leads naturally to the idea that one should progressively down-weight the contributions from neighbouring
particles as their relative distance increases, in order that changes in distant particles have a progressively
smaller influence on the local estimate (that is, the density estimate is smoothed).

2.2. The SPH density estimator

This third approach forms the basis of SPH and is shown in Fig. 1c: Here the density is computed using
a weighted summation over nearby particles, given by

⇢(r) =

NneighX
b=1

m
b

W (r� r
b

, h), (2)

where W is an (as yet unspecified) weight function with dimensions of inverse volume and h is a scale pa-
rameter determining the rate of fall-o↵ of W as a function of the particle spacing (also yet to be determined).

Conservation of total mass
R
⇢dV =

P
Npart

b=1 m
b

implies a normalisation condition on W given byZ
V

W (r0 � r
b

, h)dV0 = 1. (3)

The accuracy of the density estimate then rests on the choice of a su�ciently good weight function
(hereafter referred to as the smoothing kernel). Elementary considerations suggest that a good density
kernel should have at least the following properties:

1. A weighting that is positive, decreases monotonically with relative distance and has smooth derivatives;
2. Symmetry with respect to (r� r0) – i.e., W (r0 � r, h) ⌘ W (|r0 � r|, h); and
3. A flat central portion so the density estimate is not strongly a↵ected by a small change in position of

a near neighbour.

A natural choice that satisfies all of the above properties is the Gaussian:

W (r� r0, h) =
�

hd

exp


� (r� r0)2

h2

�
, (4)

where d refers to the number of spatial dimensions and � is a normalisation factor given by � = [1/
p
⇡, 1/⇡, 1/(⇡

p
⇡)]

in [1,2,3] dimensions. The Gaussian satisfies condition 1 particularly well since it is infinitely smooth (dif-
ferentiable) – and gives in practice an excellent density estimate. However it has the practical disadvantage
of requiring interaction with all of the particles in the domain [with computational cost of O(N2) if comput-
ing the density at the particle locations], despite the fact that the relative contribution from neighbouring
particles quickly becomes negligible with increasing distance. Thus in practice it is better to use a kernel
that is Gaussian-like in shape but truncated at a finite radius (e.g. a few times the scale length, h). Using
kernels with such “compact support” means a much more e�cient density evaluation, since the cost scales
like O(N

neigh

N), but inevitably leads to a more noisy density estimate since one is more sensitive to small
changes in the local distribution.

3

x [cm]

z 
[c

m
]

-5×1016 0 5×1016

-5×1016

0

5×1016

t=0 yrs

The second approach (Fig. 1b) is to remove the mesh entirely and instead calculate the density based on
a local sampling of the mass distribution, for example in a sphere centred on the location of the sampling
point (which may or may not be the location of a particle itself). The most basic scheme would be to divide
the total mass by the sampling volume, i.e.,
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P
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4
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3
. (1)

The problem of resolving clustered/sparse regions can be easily addressed in this method by adjusting the
size of the sampling volume according to the local number density of sampling points, for example by
computing with a fixed “number of neighbours” for each particle – as shown in the Figure. However, this
leads to a very noisy estimate, since the density estimate will be very sensitive to whether a distant particle
on the edge of the volume is “in” or “out” of the estimate (with �⇢ / 1/N

neigh

for equal mass particles). This
leads naturally to the idea that one should progressively down-weight the contributions from neighbouring
particles as their relative distance increases, in order that changes in distant particles have a progressively
smaller influence on the local estimate (that is, the density estimate is smoothed).

2.2. The SPH density estimator

This third approach forms the basis of SPH and is shown in Fig. 1c: Here the density is computed using
a weighted summation over nearby particles, given by
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, h), (2)

where W is an (as yet unspecified) weight function with dimensions of inverse volume and h is a scale pa-
rameter determining the rate of fall-o↵ of W as a function of the particle spacing (also yet to be determined).

Conservation of total mass
R
⇢dV =

P
Npart

b=1 m
b

implies a normalisation condition on W given byZ
V

W (r0 � r
b

, h)dV0 = 1. (3)

The accuracy of the density estimate then rests on the choice of a su�ciently good weight function
(hereafter referred to as the smoothing kernel). Elementary considerations suggest that a good density
kernel should have at least the following properties:

1. A weighting that is positive, decreases monotonically with relative distance and has smooth derivatives;
2. Symmetry with respect to (r� r0) – i.e., W (r0 � r, h) ⌘ W (|r0 � r|, h); and
3. A flat central portion so the density estimate is not strongly a↵ected by a small change in position of

a near neighbour.

A natural choice that satisfies all of the above properties is the Gaussian:

W (r� r0, h) =
�

hd

exp


� (r� r0)2

h2

�
, (4)

where d refers to the number of spatial dimensions and � is a normalisation factor given by � = [1/
p
⇡, 1/⇡, 1/(⇡

p
⇡)]

in [1,2,3] dimensions. The Gaussian satisfies condition 1 particularly well since it is infinitely smooth (dif-
ferentiable) – and gives in practice an excellent density estimate. However it has the practical disadvantage
of requiring interaction with all of the particles in the domain [with computational cost of O(N2) if comput-
ing the density at the particle locations], despite the fact that the relative contribution from neighbouring
particles quickly becomes negligible with increasing distance. Thus in practice it is better to use a kernel
that is Gaussian-like in shape but truncated at a finite radius (e.g. a few times the scale length, h). Using
kernels with such “compact support” means a much more e�cient density evaluation, since the cost scales
like O(N

neigh

N), but inevitably leads to a more noisy density estimate since one is more sensitive to small
changes in the local distribution.
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Ø How is density calculated?
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The second approach (Fig. 1b) is to remove the mesh entirely and instead calculate the density based on
a local sampling of the mass distribution, for example in a sphere centred on the location of the sampling
point (which may or may not be the location of a particle itself). The most basic scheme would be to divide
the total mass by the sampling volume, i.e.,
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The problem of resolving clustered/sparse regions can be easily addressed in this method by adjusting the
size of the sampling volume according to the local number density of sampling points, for example by
computing with a fixed “number of neighbours” for each particle – as shown in the Figure. However, this
leads to a very noisy estimate, since the density estimate will be very sensitive to whether a distant particle
on the edge of the volume is “in” or “out” of the estimate (with �⇢ / 1/N

neigh

for equal mass particles). This
leads naturally to the idea that one should progressively down-weight the contributions from neighbouring
particles as their relative distance increases, in order that changes in distant particles have a progressively
smaller influence on the local estimate (that is, the density estimate is smoothed).

2.2. The SPH density estimator

This third approach forms the basis of SPH and is shown in Fig. 1c: Here the density is computed using
a weighted summation over nearby particles, given by
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, h), (2)

where W is an (as yet unspecified) weight function with dimensions of inverse volume and h is a scale pa-
rameter determining the rate of fall-o↵ of W as a function of the particle spacing (also yet to be determined).

Conservation of total mass
R
⇢dV =

P
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implies a normalisation condition on W given byZ
V

W (r0 � r
b

, h)dV0 = 1. (3)

The accuracy of the density estimate then rests on the choice of a su�ciently good weight function
(hereafter referred to as the smoothing kernel). Elementary considerations suggest that a good density
kernel should have at least the following properties:

1. A weighting that is positive, decreases monotonically with relative distance and has smooth derivatives;
2. Symmetry with respect to (r� r0) – i.e., W (r0 � r, h) ⌘ W (|r0 � r|, h); and
3. A flat central portion so the density estimate is not strongly a↵ected by a small change in position of

a near neighbour.

A natural choice that satisfies all of the above properties is the Gaussian:

W (r� r0, h) =
�

hd

exp


� (r� r0)2

h2

�
, (4)

where d refers to the number of spatial dimensions and � is a normalisation factor given by � = [1/
p
⇡, 1/⇡, 1/(⇡

p
⇡)]

in [1,2,3] dimensions. The Gaussian satisfies condition 1 particularly well since it is infinitely smooth (dif-
ferentiable) – and gives in practice an excellent density estimate. However it has the practical disadvantage
of requiring interaction with all of the particles in the domain [with computational cost of O(N2) if comput-
ing the density at the particle locations], despite the fact that the relative contribution from neighbouring
particles quickly becomes negligible with increasing distance. Thus in practice it is better to use a kernel
that is Gaussian-like in shape but truncated at a finite radius (e.g. a few times the scale length, h). Using
kernels with such “compact support” means a much more e�cient density evaluation, since the cost scales
like O(N

neigh

N), but inevitably leads to a more noisy density estimate since one is more sensitive to small
changes in the local distribution.
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Ø How is density calculated?
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Figure 2: The M4 (cubic, truncated at 2h), M5 (quartic, truncated at 2.5h) and M6 (quintic, truncated at 3h) Schoenberg
(1946) B-spline kernel functions (solid lines) and their first (long-dashed) and second (short-dashed) derivatives, compared to
the Gaussian (right panel and dotted lines in other panels). Notice that although the “number of neighbours” increases in
the M5 and M6 functions compared to the cubic spline, the smoothing scale h retains the same meaning with respect to the
Gaussian. Thus, using the higher order B-splines is a way to increase the smoothness of the kernel summations without altering
the resolution length, and is very di↵erent to simply increasing the number of neighbours under the cubic spline.

2.3. Kernel functions with compact support

There are many kernel functions which fit this bill. The most well-used (for SPH at least) are the
Schoenberg (1946) B-spline functions (Monaghan and Lattanzio, 1985; Monaghan, 1985, 2005), generated
as the Fourier transform

M
n

(x, h) =
1

2⇡

Z 1

�1


sin (kh/2)

kh/2

�
n

cos(kx)dk. (5)

These give progressively better approximations to the Gaussian at higher n, both by increasing the radius
of compact support and by increasing smoothness, since each function M

n

is continuous up to the {n�2}th
derivatives. Since we minimally require continuity in at least the first and second derivatives, the lowest
order B-spline useful for SPH is the M4 (cubic) spline truncated at 2h:

w(q) = �

8<:
1
4 (2� q)3 � (1� q)3, 0  q < 1;
1
4 (2� q)3, 1  q < 2;
0. q � 2,

(6)

where for convenience we use W (|r�r0|, h) ⌘ 1
h

dw(q), where q = |r�r0|/h and � is a normalisation constant
given by � = [2/3, 10/(7⇡), 1/⇡] in [1, 2, 3] dimensions. Next are the M5 quartic, truncated at 2.5h:
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with normalisation � = [1/24, 96/1199⇡, 1/20⇡], and the M6 quintic, truncated at 3h:

w(q) = �

8>><>>:
(3� q)5 � 6(2� q)5 + 15(1� q)5, 0  q < 1;
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Gaussian. Thus, using the higher order B-splines is a way to increase the smoothness of the kernel summations without altering
the resolution length, and is very di↵erent to simply increasing the number of neighbours under the cubic spline.
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Figure 2: The M4 (cubic, truncated at 2h), M5 (quartic, truncated at 2.5h) and M6 (quintic, truncated at 3h) Schoenberg
(1946) B-spline kernel functions (solid lines) and their first (long-dashed) and second (short-dashed) derivatives, compared to
the Gaussian (right panel and dotted lines in other panels). Notice that although the “number of neighbours” increases in
the M5 and M6 functions compared to the cubic spline, the smoothing scale h retains the same meaning with respect to the
Gaussian. Thus, using the higher order B-splines is a way to increase the smoothness of the kernel summations without altering
the resolution length, and is very di↵erent to simply increasing the number of neighbours under the cubic spline.
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Ø Density summation

Ø Where
Ø N is number of neighbours
Ø mb is particle mass
Ø W is smoothing kernel

Ø What is h?
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Ø How is density calculated?

The second approach (Fig. 1b) is to remove the mesh entirely and instead calculate the density based on
a local sampling of the mass distribution, for example in a sphere centred on the location of the sampling
point (which may or may not be the location of a particle itself). The most basic scheme would be to divide
the total mass by the sampling volume, i.e.,

⇢(r) =

P
Nneigh

b=1 m
b

4
3⇡R

3
. (1)

The problem of resolving clustered/sparse regions can be easily addressed in this method by adjusting the
size of the sampling volume according to the local number density of sampling points, for example by
computing with a fixed “number of neighbours” for each particle – as shown in the Figure. However, this
leads to a very noisy estimate, since the density estimate will be very sensitive to whether a distant particle
on the edge of the volume is “in” or “out” of the estimate (with �⇢ / 1/N

neigh

for equal mass particles). This
leads naturally to the idea that one should progressively down-weight the contributions from neighbouring
particles as their relative distance increases, in order that changes in distant particles have a progressively
smaller influence on the local estimate (that is, the density estimate is smoothed).

2.2. The SPH density estimator

This third approach forms the basis of SPH and is shown in Fig. 1c: Here the density is computed using
a weighted summation over nearby particles, given by

⇢(r) =

NneighX
b=1

m
b

W (r� r
b

, h), (2)

where W is an (as yet unspecified) weight function with dimensions of inverse volume and h is a scale pa-
rameter determining the rate of fall-o↵ of W as a function of the particle spacing (also yet to be determined).

Conservation of total mass
R
⇢dV =

P
Npart

b=1 m
b

implies a normalisation condition on W given byZ
V

W (r0 � r
b

, h)dV0 = 1. (3)

The accuracy of the density estimate then rests on the choice of a su�ciently good weight function
(hereafter referred to as the smoothing kernel). Elementary considerations suggest that a good density
kernel should have at least the following properties:

1. A weighting that is positive, decreases monotonically with relative distance and has smooth derivatives;
2. Symmetry with respect to (r� r0) – i.e., W (r0 � r, h) ⌘ W (|r0 � r|, h); and
3. A flat central portion so the density estimate is not strongly a↵ected by a small change in position of

a near neighbour.

A natural choice that satisfies all of the above properties is the Gaussian:

W (r� r0, h) =
�

hd

exp


� (r� r0)2

h2

�
, (4)

where d refers to the number of spatial dimensions and � is a normalisation factor given by � = [1/
p
⇡, 1/⇡, 1/(⇡

p
⇡)]

in [1,2,3] dimensions. The Gaussian satisfies condition 1 particularly well since it is infinitely smooth (dif-
ferentiable) – and gives in practice an excellent density estimate. However it has the practical disadvantage
of requiring interaction with all of the particles in the domain [with computational cost of O(N2) if comput-
ing the density at the particle locations], despite the fact that the relative contribution from neighbouring
particles quickly becomes negligible with increasing distance. Thus in practice it is better to use a kernel
that is Gaussian-like in shape but truncated at a finite radius (e.g. a few times the scale length, h). Using
kernels with such “compact support” means a much more e�cient density evaluation, since the cost scales
like O(N

neigh

N), but inevitably leads to a more noisy density estimate since one is more sensitive to small
changes in the local distribution.

3

x [cm]

z 
[c

m
]

-5×1016 0 5×1016

-5×1016

0

5×1016

t=0 yrs



Ø Density summation

Ø Where
Ø N is number of neighbours
Ø mb is particle mass
Ø W is smoothing kernel

Ø What is h?

SPH: Density: Determining h

16

Ø How is density calculated?
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The second approach (Fig. 1b) is to remove the mesh entirely and instead calculate the density based on
a local sampling of the mass distribution, for example in a sphere centred on the location of the sampling
point (which may or may not be the location of a particle itself). The most basic scheme would be to divide
the total mass by the sampling volume, i.e.,

⇢(r) =
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. (1)

The problem of resolving clustered/sparse regions can be easily addressed in this method by adjusting the
size of the sampling volume according to the local number density of sampling points, for example by
computing with a fixed “number of neighbours” for each particle – as shown in the Figure. However, this
leads to a very noisy estimate, since the density estimate will be very sensitive to whether a distant particle
on the edge of the volume is “in” or “out” of the estimate (with �⇢ / 1/N

neigh

for equal mass particles). This
leads naturally to the idea that one should progressively down-weight the contributions from neighbouring
particles as their relative distance increases, in order that changes in distant particles have a progressively
smaller influence on the local estimate (that is, the density estimate is smoothed).

2.2. The SPH density estimator

This third approach forms the basis of SPH and is shown in Fig. 1c: Here the density is computed using
a weighted summation over nearby particles, given by
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where W is an (as yet unspecified) weight function with dimensions of inverse volume and h is a scale pa-
rameter determining the rate of fall-o↵ of W as a function of the particle spacing (also yet to be determined).

Conservation of total mass
R
⇢dV =

P
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b=1 m
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implies a normalisation condition on W given byZ
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W (r0 � r
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, h)dV0 = 1. (3)

The accuracy of the density estimate then rests on the choice of a su�ciently good weight function
(hereafter referred to as the smoothing kernel). Elementary considerations suggest that a good density
kernel should have at least the following properties:

1. A weighting that is positive, decreases monotonically with relative distance and has smooth derivatives;
2. Symmetry with respect to (r� r0) – i.e., W (r0 � r, h) ⌘ W (|r0 � r|, h); and
3. A flat central portion so the density estimate is not strongly a↵ected by a small change in position of

a near neighbour.

A natural choice that satisfies all of the above properties is the Gaussian:
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exp
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, (4)

where d refers to the number of spatial dimensions and � is a normalisation factor given by � = [1/
p
⇡, 1/⇡, 1/(⇡

p
⇡)]

in [1,2,3] dimensions. The Gaussian satisfies condition 1 particularly well since it is infinitely smooth (dif-
ferentiable) – and gives in practice an excellent density estimate. However it has the practical disadvantage
of requiring interaction with all of the particles in the domain [with computational cost of O(N2) if comput-
ing the density at the particle locations], despite the fact that the relative contribution from neighbouring
particles quickly becomes negligible with increasing distance. Thus in practice it is better to use a kernel
that is Gaussian-like in shape but truncated at a finite radius (e.g. a few times the scale length, h). Using
kernels with such “compact support” means a much more e�cient density evaluation, since the cost scales
like O(N

neigh

N), but inevitably leads to a more noisy density estimate since one is more sensitive to small
changes in the local distribution.
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Ø Density summation

Ø Smoothing length relation

Ø These equations must be 
iteratively solved

Ø For a cubic spline in 3D, 
there will be Nneigh ~ 57
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Ø How is density calculated?
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0.1 Numerical method

Hydrodynamic equations:
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Ø Continuum Equations:
Ø Continuity Equation

Ø Equation of Motion

Ø Energy Equation

Ø Equation of state (e.g.)

0.1 Numerical method

Hydrodynamic equations:
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Ø Discrete Equations:
Ø Density Equation

Ø Equation of motion

Ø Energy Equation

Ø Equation of state (e.g.)

Ø where

For conversions from continuum to discrete, 
see (e.g.) Monaghan (1992, 2005), Springel (2010), Price (2012)
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Ø Pseudo-Code
Ø SPH

Ø Requires at most 2N2 + N iterations per step
Ø If N=106, then there are 2x1012 iterations per step

Ø Using neighbour finding algorithms requires 2NNneigh + N iterations per step
Ø If N=106, then there are 1.2x108 iterations per step

SPH code:
do i = 1,N

do j = 1,Nneigh

Using j, calculate density of i

enddo
enddo
do i = 1,N

do j = 1,Nneigh

Using j, calculate forces of i

enddo
enddo
do i = 1,N

Using updated forces, determine
new v, r & B of i

enddo

6



SPH: Sod Shock Tube
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Ø As written on the previous slide



SPH: Discrete Equations: Missing terms
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Ø Missing terms:
Ø Equation of motion

Ø Artificial viscosity
Ø Energy Equation

Ø Artificial conductivity

Various forms.
see (e.g.) Monaghan (1992, 2005), Springel (2010), Price (2012)



SPH: Sod Shock Tube
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Ø Maximal artificial viscosity and conductivity



SPMHD: Discrete Equations
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Ø SPH equation of motion is derived via a the Lagrangian (Price & Monaghan, 2004)

Ø SPMHD equation of motion requires the variational principle of                        , where

Ø After some math....

(Fig. 8). This manifests in the 2D K-H problem as an ‘artificial surface tension’ e↵ect, caused by the very
same kind of pressure blip across the boundary (contact discontinuity) between the dense and the light
fluids, suppressing mixing of the two. With conductivity applied (Fig. 9) the pressure is smooth across the
contact discontinuity in both problems, which for the K-H problem means that the two fluids mix correctly.
The lack of treatment of contact discontinuities in standard SPH codes (i.e., with no artificial conductivity
term) explains the discrepancy between grid and SPH results somewhat infamously highlighted by Agertz
et al. (2007).

Fig. 10 shows the same shock tube in 2D (as already discussed briefly in Fig. 5). The main di↵erence
to 1D is that the “noise” due to the particle resettling behind the shock front is visible (left subfigure). It
is often asserted that SPH performs poorly on 2D shocks for this reason, however the noise can be very
e↵ectively minimised (at some additional cost) by employing the M6 quintic kernel instead of the cubic
spline (right subfigure), giving results comparable to the 1D version and illustrating in practice how the
higher M

n

kernels can be used to obtain convergence in SPH.

7. Smoothed Particle Magnetohydrodynamics from a Lagrangian

We can follow the same general approach to constructing an SPMHD algorithm as for hydrodynamics
(Sec. 3): Write down the Lagrangian, use appropriate physical constraints and use this to consistently derive
the resultant equations of motion.

7.1. MHD Lagrangian

For MHD, the Lagrangian is given by (Price and Monaghan, 2004b)

LMHD =
X
b

m
b


1

2
v2
b

� u
b

(⇢
b

, s
b

)� 1

2µ0

B2
b

⇢
b

�
, (106)

corresponding simply to the subtraction of a magnetic energy term from the hydrodynamic verison (Eq. 16).
In the continuum limit this corresponds to the standard MHD Lagrangian used by many authors (e.g.
Newcomb, 1962; Field, 1986)

LMHD =

Z ✓
1

2
⇢v2 � ⇢u� 1

2µ0
B2

◆
dV. (107)

The di↵erence to the hydrodynamic case is that, unlike the thermal energy term, neither the magnetic
field B nor the change in the magnetic field can be written directly as a function of the particle coordinates,
so we cannot straightforwardly employ the Euler-Lagrange equations (21). Instead, we can use the more
general form of the variational principle given by �S =

R
�Ldt = 0 (Sec. 3.2), where from (106) we have
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, (108)

and the perturbation is with respect to a small change in the particle coordinates �r. So we can derive the
equations of motion provided that we are able to express the change in the magnetic field �B as a function of
the change in particle coordinates – equivalent to being able to write down an expression for the Lagrangian
time derivative dB/dt [or equivalently, d(B/⇢)/dt] since d/dt ⌘ �/�t. In other words, in order to derive the
SPMHD equations of motion it is necessary to specify not only the density estimate but also the manner in
which the magnetic field is evolved.

7.2. SPMHD formulation of the induction equation

Given the induction equation for (ideal) MHD, written in the Lagrangian form

d

dt

✓
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⇢

◆
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✓
B

⇢
·r

◆
v, (109)
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(Fig. 8). This manifests in the 2D K-H problem as an ‘artificial surface tension’ e↵ect, caused by the very
same kind of pressure blip across the boundary (contact discontinuity) between the dense and the light
fluids, suppressing mixing of the two. With conductivity applied (Fig. 9) the pressure is smooth across the
contact discontinuity in both problems, which for the K-H problem means that the two fluids mix correctly.
The lack of treatment of contact discontinuities in standard SPH codes (i.e., with no artificial conductivity
term) explains the discrepancy between grid and SPH results somewhat infamously highlighted by Agertz
et al. (2007).

Fig. 10 shows the same shock tube in 2D (as already discussed briefly in Fig. 5). The main di↵erence
to 1D is that the “noise” due to the particle resettling behind the shock front is visible (left subfigure). It
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In the continuum limit this corresponds to the standard MHD Lagrangian used by many authors (e.g.
Newcomb, 1962; Field, 1986)

LMHD =

Z ✓
1

2
⇢v2 � ⇢u� 1

2µ0
B2

◆
dV. (107)

The di↵erence to the hydrodynamic case is that, unlike the thermal energy term, neither the magnetic
field B nor the change in the magnetic field can be written directly as a function of the particle coordinates,
so we cannot straightforwardly employ the Euler-Lagrange equations (21). Instead, we can use the more
general form of the variational principle given by �S =

R
�Ldt = 0 (Sec. 3.2), where from (106) we have

�L = m
a

v
a

· �v
a

�
X
b

m
b

"
@u

b

@⇢
b

����
s

�⇢
b

+
1

2µ0

✓
B

b

⇢
b

◆2

�⇢
b

+
1

µ0
B

b

· �
✓
B

b

⇢
b

◆#
, (108)

and the perturbation is with respect to a small change in the particle coordinates �r. So we can derive the
equations of motion provided that we are able to express the change in the magnetic field �B as a function of
the change in particle coordinates – equivalent to being able to write down an expression for the Lagrangian
time derivative dB/dt [or equivalently, d(B/⇢)/dt] since d/dt ⌘ �/�t. In other words, in order to derive the
SPMHD equations of motion it is necessary to specify not only the density estimate but also the manner in
which the magnetic field is evolved.

7.2. SPMHD formulation of the induction equation

Given the induction equation for (ideal) MHD, written in the Lagrangian form
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(Fig. 8). This manifests in the 2D K-H problem as an ‘artificial surface tension’ e↵ect, caused by the very
same kind of pressure blip across the boundary (contact discontinuity) between the dense and the light
fluids, suppressing mixing of the two. With conductivity applied (Fig. 9) the pressure is smooth across the
contact discontinuity in both problems, which for the K-H problem means that the two fluids mix correctly.
The lack of treatment of contact discontinuities in standard SPH codes (i.e., with no artificial conductivity
term) explains the discrepancy between grid and SPH results somewhat infamously highlighted by Agertz
et al. (2007).

Fig. 10 shows the same shock tube in 2D (as already discussed briefly in Fig. 5). The main di↵erence
to 1D is that the “noise” due to the particle resettling behind the shock front is visible (left subfigure). It
is often asserted that SPH performs poorly on 2D shocks for this reason, however the noise can be very
e↵ectively minimised (at some additional cost) by employing the M6 quintic kernel instead of the cubic
spline (right subfigure), giving results comparable to the 1D version and illustrating in practice how the
higher M

n

kernels can be used to obtain convergence in SPH.

7. Smoothed Particle Magnetohydrodynamics from a Lagrangian

We can follow the same general approach to constructing an SPMHD algorithm as for hydrodynamics
(Sec. 3): Write down the Lagrangian, use appropriate physical constraints and use this to consistently derive
the resultant equations of motion.

7.1. MHD Lagrangian

For MHD, the Lagrangian is given by (Price and Monaghan, 2004b)
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corresponding simply to the subtraction of a magnetic energy term from the hydrodynamic verison (Eq. 16).
In the continuum limit this corresponds to the standard MHD Lagrangian used by many authors (e.g.
Newcomb, 1962; Field, 1986)
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The di↵erence to the hydrodynamic case is that, unlike the thermal energy term, neither the magnetic
field B nor the change in the magnetic field can be written directly as a function of the particle coordinates,
so we cannot straightforwardly employ the Euler-Lagrange equations (21). Instead, we can use the more
general form of the variational principle given by �S =

R
�Ldt = 0 (Sec. 3.2), where from (106) we have
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and the perturbation is with respect to a small change in the particle coordinates �r. So we can derive the
equations of motion provided that we are able to express the change in the magnetic field �B as a function of
the change in particle coordinates – equivalent to being able to write down an expression for the Lagrangian
time derivative dB/dt [or equivalently, d(B/⇢)/dt] since d/dt ⌘ �/�t. In other words, in order to derive the
SPMHD equations of motion it is necessary to specify not only the density estimate but also the manner in
which the magnetic field is evolved.

7.2. SPMHD formulation of the induction equation

Given the induction equation for (ideal) MHD, written in the Lagrangian form
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2 Wurster

With with the two induction equations of
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Section 7 of Price (2012)
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Ø Discrete Equations:
Ø Density Equation

Ø Equation of Motion

Ø Induction Equation

Ø Energy Equation

Ø MHD stress tensor

Ø Note: In all SPMHD equations, B has been normalised such that 
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Magnetohydrodynamics equations
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Normalisation
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µ0 (33)
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Ø Continuum Equations:
Ø Continuity Equation

Ø Equation of Motion

Ø Induction Equation

Ø Energy Equation

Ø Equation of state

Magnetohydrodynamics equations
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SPMHD: Ryu-Jones Shock Tube
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Ø As written on the previous slide



SPMHD: Ryu-Jones Shock Tube
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Ø With maximal artificial viscosity, conductivity and resistivity



SPMHD: Artificial Viscosity
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Ø Artificial viscosity

Ø Applied only to shocks

2 Wurster
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Plasma �:

� =
Pgas
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=

2Pgas
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(30)

The Borve Correction:
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With artificial viscosity
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2 PSEUDO-CODE

Grid code:
do k = 1,Nk

do j = 1,Nj

do i = 1,Ni

Calculate forces using cell i, j, k
and neighbours

enddo
enddo

enddo
do k = 1,Nk

do j = 1,Nj

do i = 1,Ni

Uses updated forces to calculate
new scalar quantities at

cell-centre
enddo

enddo
enddo

MNRAS 000, 1–3 (2017)

Calculated using (e.g.) the Cullen & Dehnen (2010) switch
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Ø Artificial resistivity (Tricco & Price, 2013)

Ø Always applied if there is a gradient in the magnetic field (i.e. |�B | > 0 )
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With artificial viscosity
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Daniel’s artificial resistivity
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Divergence Cleaning
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|B| (36)

0.2 Pseudo-Code

Grid code:
do k = 1,N

k

do j = 1,N
j

do i = 1,N
i

Calculate forces using cell i, j, k

and neighbours
enddo

enddo
enddo
do k = 1,N

k

do j = 1,N
j

do i = 1,N
i

Uses updated forces to calculate
new scalar quantities at
cell-centre

enddo
enddo

enddo
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Ø Artificial resistivity (Price, et al, submitted)

Ø Always applied for non-zero velocity
Ø Less resistive that that from Tricco & Price (2013)
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ityØ Price et. al. (2017) artificial resistivity 

Ø Tricco & Price (2013)

Ø Tricco & Price (2013) with alternate 
averaging

Wurster, Bate, Price & Tricco (2017)
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Divergence Cleaning
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0.2 Pseudo-Code

Grid code:
do k = 1,N

k

do j = 1,N
j

do i = 1,N
i

Calculate forces using cell i, j, k

and neighbours
enddo

enddo
enddo
do k = 1,N

k

do j = 1,N
j

do i = 1,N
i

Uses updated forces to calculate
new scalar quantities at
cell-centre

enddo
enddo

enddo
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Ø With maximal artificial viscosity, conductivity and resistivity
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Ø Discrete Equations:
Ø Density Equation

Ø Momentum Equation

Ø Induction Equation

Ø Energy Equation

Ø MHD stress tensor

The SPMHD equations with artificial terms
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The two induction equations discretised are
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With artificial viscosity
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Ø Discrete Equations:
Ø Density Equation

Ø Momentum Equation

Ø Induction Equation

Ø Energy Equation

Ø MHD stress tensor

The SPMHD equations with artificial terms
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With artificial viscosity
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Ø Tensile instability: the artificial clumping due to negative pressure (i.e. attractive forces)
Ø particle distribution & x-component of the magnetic field  in the 2.5D circularly 

polarized Alfven wave test using the (unstable) conservative SPMHD force (left figure) 
and with a stable formulation (right figure), shown after 1 wave crossing time. 
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Figure 12: The tensile instability in SPMHD: The figures show the particle distribution (left panel in each figure) and x-
component of the magnetic field (right panel in each figure) in the 2.5D circularly polarized Alfvén wave test using the
(unstable) conservative SPMHD force (left figure) and with a stable formulation (right figure), shown after 1 wave crossing
time. Untreated, the MHD tensile instability results in a catastrophic clumping of particles along the magnetic field lines
(left figure) which proceeds to destroy the calculation. Physically, it can be attributed to non-zero divergence terms in the
conservative form of the MHD force, and can be stabilised by explicitly subtracting the unphysical ‘source term’ (right figure).

way, since what is necessary to achieve a force that is both conservative and exactly perpendicular to B is
to constrain r ·B to be zero in the discretisation that the term appears in the force equation10. In SPMHD
this is equivalent to requiring both exact derivatives and exact conservation which, as discussed in Sec. 4.7,
does not appear to be possible.

8.1. Fix 1: subtract a constant from the stress

The original paper by Phillips and Monaghan (1985) proposed a simple fix involving a prior sweep over
the particles to find the maximum (negative) stress, which would then simply be subtracted (as a constant)
from the stress in the equations of motion, giving
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, (127)

which conserves momentum but not total energy. The caveats are that there is a computational cost
involved to compute Sij

max

and if this term is large it can lead to unphysical e↵ects in the simulation. On
the other hand, this is a simple technique that removes the instability and has relatively few side e↵ects
provided the correction is small. It is particularly useful if, for example, the simulation is dominated by
large (constant) external stresses, whereby explicitly subtracting the external component of the stress (e.g.
due to an externally imposed magnetic field) can serve to stabilise the formulation.

8.2. Fix 2: use a more accurate but non-conservative gradient estimate in the anisotropic force

Morris (1996b) proposed a compromise approach whereby one retains conservative form in the isotropic
part of the force, but adopts a more accurate but non-conservative derivative estimate (that vanishes when

10This was initially thought impossible by Tóth 2000, though Tóth 2002 later showed such a discretisation could be achieved
for grid codes. However, there does not appear to be an equivalent formulation in SPMHD, since the tensile instability occurs
even in one dimension where the divergence constraint can be trivially enforced using B

x

= const, but @B

x

/@x 6= 0 in the
force equation (c.f. Eq. 124).
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Ø Momentum Equation (excluding artificial viscosity)

Ø The magnetic monopole term exists when the equations conserve energy

= 0 physically
≠ 0 numerically

Magnetic monopoles:
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The two induction equations discretised are
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Ø Momentum equation inherently includes �.B ≠ 0, thus needs to be removed
(Børve, Omang & Trulsen 2001, 2004; Tricco & Price 2012)

Ø fa  = 1:  removes magnetic monopoles; does not conserve energy or momentum
Ø fa = 0:  conserves energy & momentum; includes unphysical magnetic monopoles
Ø We name fa > 0 the Børve correction

2 Wurster

With with the two induction equations of
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To get a nice, consistent form of the equations for the presentation:

1 Induction equation
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Ø With maximal artificial viscosity, conductivity and resistivity and Børve correction
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Ø What is the optimal fa ?
Ø fa  = 1:  removes magnetic monopoles; does not conserve energy or momentum
Ø fa = 0:  conserves energy & momentum; includes unphysical magnetic monopoles
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Ø What is the optimal fa ?
Ø fa  = 1:  removes magnetic monopoles; does not conserve energy or momentum
Ø fa = 0:  conserves energy & momentum; includes unphysical magnetic monopoles

fa  = 1                                                                       fa = 0
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Ø What is the optimal fa ?
Ø fa  = 1:  removes magnetic monopoles; does not conserve energy or momentum
Ø fa = 0:  conserves energy & momentum; includes unphysical magnetic monopoles

fa  = 1                                                                       fa = 0
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Ø What is the optimal fa ?
Ø fa  = 1:  removes magnetic monopoles; does not conserve energy or momentum
Ø fa = 0:  conserves energy & momentum; includes unphysical magnetic monopoles

Ø Recall motion in 3D without the Børve correction

2 Wurster

With with the two induction equations of
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= r⇥ (v ⇥B) = (B ·r)v �B (r · v) (26)
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Ø What is the optimal fa ?
Ø fa  = 1:  removes magnetic monopoles; does not conserve energy or momentum
Ø fa = 0:  conserves energy & momentum; includes unphysical magnetic monopoles

Ø Recall motion in 3D without the Børve correction

Ø Consider motion in a 1-D calculation:

Ø If                           , then                   , therefore the force is attractive, which leads to the 
Tensile instability

2 Wurster

With with the two induction equations of
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The two induction equations discretised are
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The Borve Correction:
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The two induction equations discretised are
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The Borve Correction:
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With artificial viscosity
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Ø What is the optimal fa ?
Ø fa  = 1:  removes magnetic monopoles; does not conserve energy or momentum
Ø fa = 0:  conserves energy & momentum; includes unphysical magnetic monopoles

Ø Consider plasma β:

Ø β >> 1: Evolution is dominated by gas pressure
Ø β << 1: Evolution is dominated by magnetic pressure & leads to Tensile instability 
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Ø What is the optimal fa ?
Ø fa  = 1:  removes magnetic monopoles; does not conserve energy or momentum
Ø fa = 0:  conserves energy & momentum; includes unphysical magnetic monopoles

Brio-Wu (unstable with fa  = 0)           Ryu-Jones (stable with fa  = 0) 
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Ø What is the optimal fa ?
Ø fa  = 1           (Børve, Omang & Trulsen 2001; Tricco & Price 2012)
Ø 0 < fa < ½   (Børve, Omang & Trulsen 2004)

Ø If unstable only for magnetically dominated regions (i.e. β < 1) , then only subtract there:

2 Wurster

With with the two induction equations of

dB
dt

= r⇥ (v ⇥B) = (B ·r)v �B (r · v) (26)
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The Borve Correction:

fa =

8
<
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1; �a  1
2� �; 1 < �a  2
0; �a > 2

(31)

2 PSEUDO-CODE

Grid code:
do k = 1,Nk

do j = 1,Nj

do i = 1,Ni

Calculate forces using cell i, j, k
and neighbours

enddo
enddo

enddo
do k = 1,Nk

do j = 1,Nj

do i = 1,Ni

Uses updated forces to calculate
new scalar quantities at
cell-centre

enddo
enddo

enddo

SPH code:
do i = 1,N

do j = 1,N
Using j, calculate density of i

enddo
enddo
do i = 1,N

do j = 1,N
Using j, calculate forces of i

enddo
enddo
do i = 1,N

Using updated forces, determine
new v, r & B of i

enddo

MNRAS 000, ??–?? (2017)
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Ø fa ≡ fa(β)
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Ø As previously shown, �·B = 0 is not guaranteed by the SPMHD equations
Ø Option 1: Ignore

Ø Monitor               and hope it remains small

With artificial viscosity
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Divergence Cleaning

hr ·B
|B| (32)

0.2 Pseudo-Code

Grid code:
do k = 1,N

k

4
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Ø As previously shown, �·B = 0 is not guaranteed by the SPMHD equations
Ø Option 2: Clean

Ø e.g. constrained hyperbolic/parabolic divergence cleaning 
(Tricco, Price & Bate, 2016 using Dedner et al 2002 and Price & Monaghan 2005)

Ø Introduce a (non-physical) scalar field, ѱ, with energy

Ø Continuum equations

where ch is the characteristic or wave-cleaning speed
Ø Discrete equations
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By similar arguments, the empirical values of σ obtained by Tricco and Price [41] should be not affected by evolving ψ/ch
instead of ψ . It is straightforward to show that this term provides a negative definite contribution to the total energy. The 
rate of change of total energy from the damping term in the discrete system is given by

dE
dt

=
∑

a

ma
ψa

µ0ρach,a

d
dt

(
ψa

ch,a

)

damp
. (19)

Inserting Equation (18), we have

dE
dt

= −
∑

a

ma
ψ2

a

µ0ρac2
hτ

, (20)

showing that the ψ/ch damping term is guaranteed to remove energy from the system. This energy removal may be bal-
anced by an equivalent deposit into thermal energy so that total energy is conserved, however there is no requirement to do 
this for stability reasons. As discussed in Tricco and Price [41], the removal of magnetic energy and subsequent generation 
of thermal energy would be non-local due to the coupling of parabolic diffusion with hyperbolic transport. Therefore, we 
do not add the removed energy as heat.

2.5. Compression and rarefaction of ψ/ch

The dρ/dt term in Equation (11) may be balanced by adding the following term to the evolution equation for ψ/ch,

d
dt

(
ψ

ch

)

dρ/dt
= − ψ

2ch
(∇ · v), (21)

making use of the continuity equation [dρ/dt = −ρ(∇ · v)]. The SPMHD equivalent is

d
dt

(
ψa

ch,a

)

dρ/dt
= ψa

2ch,a

∑

b

mb(va − vb) · ∇a Wab(ha), (22)

where we use the difference derivative operator for ∇ · v to match the discretised continuity equation in SPH [21].
An alternative approach to handle compression and rarefaction, as suggested by one referee of this paper, would be to 

evolve the variable ψ/(ch
√

ρ) instead of ψ/ch (see also Section 2.7). Incorporating ρ into the choice of variable removes 
the need to explicitly prescribe the dρ/dt term in Equation (11), just as folding ch into the evolved variable did for dch/dt . 
We prefer the approach using Equations (21)–(22) for practical reasons — evolving ψ/(ch

√
ρ) introduces factors of √ρ into 

the cleaning equations which are expensive to compute, particularly compared to ∇ · v which is typically calculated already 
in SPMHD codes. Furthermore, evolving ψ/ch or ψ/(ch

√
ρ) is analogous to evolving B/ρ instead of B, both of which are 

commonly used in SPMHD, and neither of which have been found to confer any advantage over the other.
We do note that our previous tests of the ∇ · v term found that it provided no real benefit in terms of divergence error 

reduction [41,40]. The importance of this term is tested further in Section 3.6.

2.6. Summary of modified cleaning equations

The cleaning equations, modified to evolve ψ/ch so that energy is conserved by the hyperbolic terms even in the pres-
ence of time-varying cleaning wave speeds, are given by

dB
dt

= (B · ∇)v − B(∇ · v) − ∇ψ, (23)

d
dt

(
ψ

ch

)
= −ch(∇ · B) − 1

τ

(
ψ

ch

)
− 1

2

(
ψ

ch

)
(∇ · v). (24)

The corresponding discrete set of conservative SPMHD cleaning equations are given by
(

dBa

dt

)

ψ

= −ρa

∑

b

mb

[
ψa

%aρ2
a
∇a Wab(ha) + ψb

%bρ
2
b

∇a Wab(hb)

]

, (25)

d
dt

(
ψ

ch

)

a
= ch,a

%aρa

∑

b

mb(Ba − Bb) · ∇a Wab(ha) − 1
τ

(
ψ

ch

)

a
+ 1

2

(
ψ

ch

)

a

∑

b

mb(va − vb) · ∇a Wab(ha). (26)

In an existing code which evolves ψ , the modifications needed to implement the new cleaning scheme evolving ψ/ch are 
minor. Both ψ and ψ/ch are zero initially. In the code we typically set

ch,a =
√

v2
A,a + c2

s,a, (27)
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We do note that our previous tests of the ∇ · v term found that it provided no real benefit in terms of divergence error 
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∇a Wab(ha) + ψb
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In an existing code which evolves ψ , the modifications needed to implement the new cleaning scheme evolving ψ/ch are 
minor. Both ψ and ψ/ch are zero initially. In the code we typically set

ch,a =
√

v2
A,a + c2
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of the method are tested in Section 3 using a series of test problems. In particular, we will show that, if the time variability 
of the cleaning wave speed is not properly accounted for, the non-conservation of energy introduced may reduce the effec-
tiveness of the divergence cleaning, and, worst case scenario, lead to runaway energy growth and numerical instability. In 
Section 4, the original and updated versions of the method are compared using standard MHD tests to quantify how much 
of an improvement the new scheme confers. Finally, in Section 5, we demonstrate that, by iterating the divergence cleaning 
equations, it is possible to clean the magnetic field until ∇ · B = 0 to machine precision in the chosen discrete divergence 
operator. We summarise in Section 6.

While our focus in this paper is on improved divergence cleaning methods for SPMHD, our analysis and in particular 
our reformulation of the cleaning equations should apply equally to implementations of hyperbolic/parabolic cleaning in 
grid-based MHD codes, particularly in the context of adaptive mesh refinement (AMR) where jumps in the cleaning speed 
may occur at refinement boundaries. Application to Eulerian MHD codes is beyond the scope of this paper but would be an 
interesting and worthwhile extension to our work.

2. Constrained hyperbolic divergence cleaning with variable wave speeds

The issue with variable wave cleaning speeds can be seen by considering the energy conservation of the cleaning equa-
tions. Equations (5)–(6) transfer energy back and forth between the B and ψ fields, and, in the absence of damping, this 
transfer should conserve energy. If it does not, then the method may inject spurious energy into the magnetic field which 
can act against the cleaning efforts.

2.1. Constraints from energy conservation

To derive the conservative cleaning equations, the energy content of the ψ field needs to be known. The specific energy 
of the ψ field was determined by Tricco and Price [41] to be

eψ = ψ2

2µ0ρc2
h

. (7)

The total energy is given by

E =
∫ [

1
2

v2 + u + 1
2

B2

µ0ρ
+ eψ

]
ρdV , (8)

where u is the specific thermal energy and ρ is the density, such that ρdV is equivalent to the mass element dm. The 
total energy must be conserved, that is, dE/dt = 0. Since we are concerned only with the cleaning terms added to the usual 
MHD equations (which conserve energy in the absence of divergence cleaning) we need only consider the additional term 
involving ψ in Equation (5). This means that the time derivative of magnetic energy should balance the time derivative of 
eψ according to

dE
dt

=
∫ [

B
µ0ρ

·
(

dB
dt

)

ψ

+ d
dt

(
ψ2

2µ0ρc2
h

)]

ρdV = 0, (9)

where the Lagrangian time derivative of the mass element ρdV is zero. The deψ/dt term, when expanded, produces terms 
related to the time change of ψ , ρ and ch according to

∫ [
B

µ0ρ
·
(

dB
dt

)

ψ

+ ψ

µ0ρc2
h

dψ

dt
− ψ2

2µ0ρ2c2
h

dρ

dt
− ψ2

µ0ρc3
h

dch

dt

]
ρdV = 0. (10)

We note that dρ/dt terms arising from the magnetic energy are balanced as part of the MHD equations, so do not need to 
considered here. The dρ/dt term resulting from the eψ term was accounted for in Tricco and Price [41] by the addition of 
a 1

2 ψ(∇ · v) term to the evolution equation for ψ (Equation (6)). The question is how to handle the dch/dt term.
Our approach is to use ψ/ch as the evolved quantity instead of ψ . In this case, Equation (9) when expanded yields

∫ [
B

µ0ρ
·
(

dB
dt

)

ψ

+ ψ

µ0ρch

d
dt

(
ψ

ch

)
− ψ2

2µ0ρ2c2
h

dρ

dt

]

ρdV = 0, (11)

such that the dch/dt term is included within the d/dt(ψ/ch) term. By evolving ψ/ch instead of ψ , we avoid the need to 
explicitly prescribe dch/dt .
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Ø As previously shown, �·B = 0 is not guaranteed by the SPMHD equations
Ø Option 2: Clean

Ø e.g. constrained hyperbolic/parabolic divergence cleaning 
(Tricco, Price & Bate, 2016 using Dedner et al 2002 and Price & Monaghan 2005)

Ø Introduce a (non-physical) scalar field, ѱ, with energy

Ø Continuum equations

where ch is the characteristic or wave-cleaning speed
Ø Discrete equations
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By similar arguments, the empirical values of σ obtained by Tricco and Price [41] should be not affected by evolving ψ/ch
instead of ψ . It is straightforward to show that this term provides a negative definite contribution to the total energy. The 
rate of change of total energy from the damping term in the discrete system is given by

dE
dt

=
∑

a

ma
ψa

µ0ρach,a

d
dt

(
ψa

ch,a

)

damp
. (19)

Inserting Equation (18), we have

dE
dt

= −
∑

a

ma
ψ2

a

µ0ρac2
hτ

, (20)

showing that the ψ/ch damping term is guaranteed to remove energy from the system. This energy removal may be bal-
anced by an equivalent deposit into thermal energy so that total energy is conserved, however there is no requirement to do 
this for stability reasons. As discussed in Tricco and Price [41], the removal of magnetic energy and subsequent generation 
of thermal energy would be non-local due to the coupling of parabolic diffusion with hyperbolic transport. Therefore, we 
do not add the removed energy as heat.

2.5. Compression and rarefaction of ψ/ch

The dρ/dt term in Equation (11) may be balanced by adding the following term to the evolution equation for ψ/ch,

d
dt

(
ψ

ch

)

dρ/dt
= − ψ

2ch
(∇ · v), (21)

making use of the continuity equation [dρ/dt = −ρ(∇ · v)]. The SPMHD equivalent is

d
dt

(
ψa

ch,a

)

dρ/dt
= ψa

2ch,a

∑

b

mb(va − vb) · ∇a Wab(ha), (22)

where we use the difference derivative operator for ∇ · v to match the discretised continuity equation in SPH [21].
An alternative approach to handle compression and rarefaction, as suggested by one referee of this paper, would be to 

evolve the variable ψ/(ch
√

ρ) instead of ψ/ch (see also Section 2.7). Incorporating ρ into the choice of variable removes 
the need to explicitly prescribe the dρ/dt term in Equation (11), just as folding ch into the evolved variable did for dch/dt . 
We prefer the approach using Equations (21)–(22) for practical reasons — evolving ψ/(ch

√
ρ) introduces factors of √ρ into 

the cleaning equations which are expensive to compute, particularly compared to ∇ · v which is typically calculated already 
in SPMHD codes. Furthermore, evolving ψ/ch or ψ/(ch

√
ρ) is analogous to evolving B/ρ instead of B, both of which are 

commonly used in SPMHD, and neither of which have been found to confer any advantage over the other.
We do note that our previous tests of the ∇ · v term found that it provided no real benefit in terms of divergence error 

reduction [41,40]. The importance of this term is tested further in Section 3.6.

2.6. Summary of modified cleaning equations

The cleaning equations, modified to evolve ψ/ch so that energy is conserved by the hyperbolic terms even in the pres-
ence of time-varying cleaning wave speeds, are given by

dB
dt

= (B · ∇)v − B(∇ · v) − ∇ψ, (23)

d
dt

(
ψ

ch

)
= −ch(∇ · B) − 1

τ

(
ψ

ch

)
− 1

2

(
ψ

ch

)
(∇ · v). (24)

The corresponding discrete set of conservative SPMHD cleaning equations are given by
(

dBa

dt

)

ψ

= −ρa

∑

b

mb

[
ψa

%aρ2
a
∇a Wab(ha) + ψb

%bρ
2
b

∇a Wab(hb)

]

, (25)

d
dt

(
ψ

ch

)

a
= ch,a

%aρa

∑

b

mb(Ba − Bb) · ∇a Wab(ha) − 1
τ

(
ψ

ch

)

a
+ 1

2

(
ψ

ch

)

a

∑

b

mb(va − vb) · ∇a Wab(ha). (26)

In an existing code which evolves ψ , the modifications needed to implement the new cleaning scheme evolving ψ/ch are 
minor. Both ψ and ψ/ch are zero initially. In the code we typically set

ch,a =
√

v2
A,a + c2

s,a, (27)

330 T.S. Tricco et al. / Journal of Computational Physics 322 (2016) 326–344

By similar arguments, the empirical values of σ obtained by Tricco and Price [41] should be not affected by evolving ψ/ch
instead of ψ . It is straightforward to show that this term provides a negative definite contribution to the total energy. The 
rate of change of total energy from the damping term in the discrete system is given by

dE
dt

=
∑

a

ma
ψa

µ0ρach,a

d
dt

(
ψa

ch,a

)

damp
. (19)

Inserting Equation (18), we have

dE
dt

= −
∑

a

ma
ψ2

a

µ0ρac2
hτ

, (20)
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ρ) is analogous to evolving B/ρ instead of B, both of which are 

commonly used in SPMHD, and neither of which have been found to confer any advantage over the other.
We do note that our previous tests of the ∇ · v term found that it provided no real benefit in terms of divergence error 

reduction [41,40]. The importance of this term is tested further in Section 3.6.

2.6. Summary of modified cleaning equations

The cleaning equations, modified to evolve ψ/ch so that energy is conserved by the hyperbolic terms even in the pres-
ence of time-varying cleaning wave speeds, are given by
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In an existing code which evolves ψ , the modifications needed to implement the new cleaning scheme evolving ψ/ch are 
minor. Both ψ and ψ/ch are zero initially. In the code we typically set
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of the method are tested in Section 3 using a series of test problems. In particular, we will show that, if the time variability 
of the cleaning wave speed is not properly accounted for, the non-conservation of energy introduced may reduce the effec-
tiveness of the divergence cleaning, and, worst case scenario, lead to runaway energy growth and numerical instability. In 
Section 4, the original and updated versions of the method are compared using standard MHD tests to quantify how much 
of an improvement the new scheme confers. Finally, in Section 5, we demonstrate that, by iterating the divergence cleaning 
equations, it is possible to clean the magnetic field until ∇ · B = 0 to machine precision in the chosen discrete divergence 
operator. We summarise in Section 6.

While our focus in this paper is on improved divergence cleaning methods for SPMHD, our analysis and in particular 
our reformulation of the cleaning equations should apply equally to implementations of hyperbolic/parabolic cleaning in 
grid-based MHD codes, particularly in the context of adaptive mesh refinement (AMR) where jumps in the cleaning speed 
may occur at refinement boundaries. Application to Eulerian MHD codes is beyond the scope of this paper but would be an 
interesting and worthwhile extension to our work.

2. Constrained hyperbolic divergence cleaning with variable wave speeds

The issue with variable wave cleaning speeds can be seen by considering the energy conservation of the cleaning equa-
tions. Equations (5)–(6) transfer energy back and forth between the B and ψ fields, and, in the absence of damping, this 
transfer should conserve energy. If it does not, then the method may inject spurious energy into the magnetic field which 
can act against the cleaning efforts.

2.1. Constraints from energy conservation

To derive the conservative cleaning equations, the energy content of the ψ field needs to be known. The specific energy 
of the ψ field was determined by Tricco and Price [41] to be

eψ = ψ2

2µ0ρc2
h

. (7)

The total energy is given by

E =
∫ [

1
2

v2 + u + 1
2

B2

µ0ρ
+ eψ

]
ρdV , (8)

where u is the specific thermal energy and ρ is the density, such that ρdV is equivalent to the mass element dm. The 
total energy must be conserved, that is, dE/dt = 0. Since we are concerned only with the cleaning terms added to the usual 
MHD equations (which conserve energy in the absence of divergence cleaning) we need only consider the additional term 
involving ψ in Equation (5). This means that the time derivative of magnetic energy should balance the time derivative of 
eψ according to

dE
dt

=
∫ [

B
µ0ρ

·
(

dB
dt

)

ψ

+ d
dt

(
ψ2

2µ0ρc2
h

)]

ρdV = 0, (9)

where the Lagrangian time derivative of the mass element ρdV is zero. The deψ/dt term, when expanded, produces terms 
related to the time change of ψ , ρ and ch according to

∫ [
B

µ0ρ
·
(

dB
dt

)

ψ

+ ψ

µ0ρc2
h

dψ

dt
− ψ2

2µ0ρ2c2
h

dρ

dt
− ψ2

µ0ρc3
h

dch

dt

]
ρdV = 0. (10)

We note that dρ/dt terms arising from the magnetic energy are balanced as part of the MHD equations, so do not need to 
considered here. The dρ/dt term resulting from the eψ term was accounted for in Tricco and Price [41] by the addition of 
a 1

2 ψ(∇ · v) term to the evolution equation for ψ (Equation (6)). The question is how to handle the dch/dt term.
Our approach is to use ψ/ch as the evolved quantity instead of ψ . In this case, Equation (9) when expanded yields

∫ [
B

µ0ρ
·
(

dB
dt

)

ψ

+ ψ

µ0ρch

d
dt

(
ψ

ch

)
− ψ2

2µ0ρ2c2
h

dρ

dt

]

ρdV = 0, (11)

such that the dch/dt term is included within the d/dt(ψ/ch) term. By evolving ψ/ch instead of ψ , we avoid the need to 
explicitly prescribe dch/dt .

• Hyperbolic Transport
• Parabolic damping
• Compression / rarefaction
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Fig. 1. Our fiducial model, used in the series of idealised tests, where fluid flowing towards the top right has divergence error artificially introduced in the 
initial, otherwise uniform, magnetic field. The renderings show the divergence of the magnetic field at t = 0, 0.33, 0.66, 1.0 (left to right). If no divergence 
cleaning is applied (top row), the error passively advects with the fluid flow. Using purely hyperbolic divergence cleaning (middle row), the divergence error 
is spread throughout the domain. With mixed hyperbolic/parabolic divergence cleaning (bottom row), the divergence error is quickly removed producing a 
clean field.

Fig. 2. Advection of a divergence blob using purely hyperbolic cleaning (σ = 0) where the divergence cleaning wave speed, globally for all particles, 
alternates between ch = 1 and ch = 2 every t = 0.05. Renderings are shown at t = 0, 0.33, 0.66, 1 (left to right). The top row uses the original divergence 
cleaning approach, which does not account for this time variation. This leads to spurious energy generation causing runaway growth of divergence error in 
the magnetic field. The bottom row uses the updated divergence cleaning approach to evolve ψ/ch, naturally accounting for changes in the wave cleaning 
speed. For this case, energy is conserved, and no growth in divergence error occurs.
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Ø As previously shown, �·B = 0 is not guaranteed by the SPMHD equations
Ø Option 3: Avoid (i.e. construction equations that enforce divergence-free)

Ø Constrained transport used by grid codes is divergence-free
Ø Constrained transport cannot be applied to SPMHD since it required computation 

of surface rather than volume integrals. 
Ø Euler Potentials

Ø Closest analogy to constrained transport in SPMHD
Ø Cannot represent winding motion or prevent dynamo processes
Ø Non-trivial to implement resistive terms
Ø Been used (e.g. Price & Bate 2007, 2008, 2009) and since abandoned in 

favour of the induction equation and cleaning
Ø Vector Potentials

Ø Numerically unstable (Price 2010)
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Ø Boundaries are optional in SPH
Ø e.g. collapse of a sphere
Ø e.g. evolution of a turbulent sphere (Bate’s cluster models)
Ø e.g. galaxy merger simulation (Wurster & Thacker 2013a,b)

http://journals.cambridge.org Downloaded: 05 Jan 2016 IP address: 130.194.20.173

Optimal SPH Initial Conditions 3

Figure 1. Popular configurations for setting up spatially uniform SPH initial conditions. From the top-left corner to the bottom right: cubic lattice, cubic
close packing, hexagonal close packing, quaquaversal tiling, random configuration, concentrical shells, gravitational glass, and the new WVT approach. All
examples contain approximately the same number of particles in the sphere (22 000). One quadrant of the sphere is cut out to allow a view into the inner
configuration. Colours change along the z-axis simply to show depth.

3.1 Spatially uniform distributions

The following methods are capable of generating spatially
uniform particle configurations.

3.1.1 Cubic lattice
Probably the simplest and fastest way to set up a uniform
particle distribution is to arrange them on a cubic lattice.
This method received early widespread use in both SPH

(Monaghan 1992) and N-body simulations (Efstathiou et al.
1985). One of the obvious problems with this method is that it
has very pronounced preferred directions along the x, y, and z
axes and their diagonals, as can easily be seen in the upper-left
example in Figure 1. In addition, the cubic lattice structure is
not a stable equilibrium configuration when the particles are
perturbed (Morris 1996; Lombardi et al. 1999), as there are
other more compact particle configurations that are energet-
ically favourable, such as cubic or hexagonal close-packed
arrangements.

PASA, 32, e048 (2015)
doi:10.1017/pasa.2015.50

t=108400 yrs
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Ø Boundaries in SPH
Ø Fixed 
Ø Periodic

Ø For Sod shock tube, periodic in y & z and fixed in x
Ø In the image, dot are active particles, circles are boundary particles
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Ø How do we treat boundaries for the gravitational collapse of a magnetised sphere?
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Ø Embed sphere in low density medium (e.g. with density ratio 30:1)
Ø Thread magnetic field throughout the entire domain
Ø Use periodic boundaries at the edge of the box
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Figure 9. The time evolution of the maximum density (left-hand panel), maximum gas temperature (centre panel) and stellar-core mass (right-hand panel)
during the RMHD calculations of the collapse of molecular cloud cores. The different lines are for cloud cores with different initial mass-to-flux ratios: µ = ∞
(i.e. no magnetic field, black solid), µ = 100 (red dotted), µ = 20 (green short dashed), µ = 10 (blue long dashed) and µ = 5 (magenta dot–dashed). The
time is measured in years from the formation of the stellar core, which is defined as being the moment when the maximum density reaches 10−4 g cm−3. The
stellar core grows much more rapidly in the strongly magnetized calculations than the unmagnetized and weakly magnetized calculations due to the angular
momentum transport driven by the magnetic field. However, there is little difference between the two most highly magnetized cases.

Figure 10. Snapshots of the density (left-hand panels) and temperature (right-hand panels) on slices parallel to the rotation axis showing the development of
the outflows that are launched from the stellar cores in the three most magnetized calculations. From top to bottom, each row is for cloud cores with initial
mass-to-flux ratios of µ = 20, 10 and 5 times critical, respectively. For each case, we show snapshots 0.5, 1.0 and 2.0 yr after stellar-core formation. The
structure of the stellar outflows is similar for each initial magnetic field strength, but it appears that weaker initial fields produce slightly better collimation.
The remnants of the first hydrostatic cores are clearly visible in the density slices (thickness |z| ≈ 3 au), and the stellar outflows are followed until just after
they have broken out of the first core in each case.

statistical physics of a perfect gas of non-relativistic and non-
degenerate fermions, can be expressed as

s/kB = 2.5 − ln

[
n

g

(
2π!2

mpkBTg

)3/2
]

, (16)

where g = 2 is the spin degeneracy of a proton, ! is the reduced
Planck constant, and kB is the Boltzmann constant, and mp is the
mass of a proton. For simplicity, we neglect the effect on the number
density of helium and heavier elements (i.e. we simply set the
number density n = ρ/mp). Note that for atomic hydrogen (µ = 1),
this can also be expressed in the familiar form of

s/kB = K + 1
γ − 1

ln
(

P

ργ

)
, (17)

where γ = 5/3, P = nkBT and K is a constant (e.g. Commerçon
et al. 2011).

Note that the entropy increases outwards, meaning that the stellar
cores are convectively stable at this point. Nuclear fusion would not
yet have begun as the central temperature is only ≈105 K.

Recently, Commerçon et al. (2011) and Vaytet et al. (2012)
examined the accretion of material on to the first hydrostatic
core in one-dimensional calculations. They found that the accre-
tion shock was supercritical and that essentially all of the en-
ergy from the accretion shock was radiated away. By contrast
Vaytet et al. (2013), using one-dimensional multigroup calcula-
tions, found that the accretion shock on to the stellar core is strongly
sub-critical, with all the accretion energy being transferred to the
core.
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SPMHD: Example: Star formation

E.g. Bate, Tricco & Price (2014) 
Video: https://www.astro.ex.ac.uk/people/mbate/Animations/BateTriccoPrice2013_MF05.mov
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Ø Cross section of particle positions



Running Phantom

61Pillars of Creation in Eagle Nebula
(source: APOD, Jan. 7, 2015)

ØInstall Phantom in the home directory

ØIn your run-directory, call 
phantom/scripts/writemake.sh SETUP > Makefile
Øwhere SETUP = shock for the Sod shock tube test, or SETUP = mhdshock for MHD shocks

ØCompile Phantom via 
make SYSTEM=gfortran; make setup SYSTEM=gfortran
Øwhere gfortran can be replaced with other systems, e.g., ifort

ØRun phantom setup via
./phantomsetup INFILE
Øwhere INFILE is the run name (e.g.) sod

ØModify INFILE.in as required

ØRun phantom via
./phantom INFILE.in

3 Miscellaneous

vsig,ab ⌘ |⇢abvab ⇥ ˆrab|/⇢ab

vsig,ab = |vab ⇥ ˆrab|

vsig,ab = |vab|

↵

�

r ·B = 0

3



Conclusions

ØParticles of fixed mass are used to represent the fluid
ØProperties are calculated at a particle’s position using a smoothing kernel and its neighbours
ØSmoothing length is adaptive
ØSmoothed particle magnetohydrodynamics requires

Øartificial resistivity for stability
Øsubtraction of magnetic monopole from equation of motion (tensile instability)
Ødivergence cleaning to remove magnetic monopoles
Øboundaries

ØThis presentation is available at: http://www.astro.ex.ac.uk/people/wurster/files/spmhd.pdf
ØContact info: j.wurster [at] exeter.ac.uk

62

James Wurster 
Computational MHD Workshop 2017: University of Leeds, Dec 12, 2017


