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A finite-size particle scheme for the numerical solution of two- and three-dimensional
gas dynamical problems of astronomical interest is described and tested. The scheme
is then applied to the fission problem for optically thick protostars. Results are given,
showing the evolution of one such protostar from an initial state as a single, rotating
star to a final state as a triple system whose components contain 60% of the original
mass. The decisiveness of this numerical test of the fission hypothesis and its relevance

to observed binaries are briefly discussed.

INTRODUCTION

THE hypothesis that fission is the mechanism
by which close binaries are formed has regained
favor in recent years. Those responsible for this revival
(Lynden-Bell 1964, 1965; James 1964; Stoeckly 1965;
Roxburgh 1966; Bodenheimer and Ostriker 1970; Le-
bovitz 1972, 1974) have rebutted earlier theoretical
objections (see also Ostriker 1970) and have discussed
the hypothesis in the context of our current under-
standing of pre-main-sequence evolution. The- early
history of the fission hypothesis and the related investi-
gations into the figures of equilibrium of rotating liquids
has been summarized by Chandrasekhar (1969).
Although fission is now commonly considered to be
the most likely explanation for the existence of close
binaries, the hypothesis cannot be regarded as proved
until the evolution of a rotating protostar has been fol-
lowed from an initial state as a single star to a final state
as a detached binary system. This is a formidable prob-

“lem, however, since it requires the ability to compute the

three-dimensional motion of a self-gravitating, com-
pressible gas. Fortunately, some simplifying circum-
stances make it less than forbidding. First, the high
frequency of close binaries over a wide mass range surely
implies that no special characteristics of the properties
of stellar matter are essential to binary formation; con-
sequently, these properties need not be treated accu-
rately.

A second and crucial simplification concerns the
spatial resolution of the calculation. Because the initial
departure from axial symmetry is due to the onset of
dynamical overstability for a mode of low order, we
might reasonably hope that the subsequent evolution can
be adequately followed with a low-resolution description
of the protostar’s structure. If this is indeed so, the
problem can be tackled with present-day computers.

On the assumption, therefore, that a decisive test of

) Permanent address: Department of Astronomy, Columbia Uni-
versity, New York, NY 10027.

the fission hypothesis might be provided by a three-
dimensional gas dynamical calculation of low spatial
resolution, the bulk of this paper is devoted to describing
(Sec. II) and testing (Sec. I1I) a numerical scheme for
carrying out such calculations. This scheme is then used
(Sec. 1V) to follow the contraction of a rotating protostar
and results illustrating the fission mechanism are ob-
tained.

I. ASSUMPTIONS AND EQUATIONS

In this section, after stating our assumptions, we derive
the basic equations in the form used when applying the
numerical technique of Sec. I1.

(a) Assumptions. A rotating, axisymmetric, optically
thick protostar of homogeneous composition will be the
starting point of the calculation, and this protostar’s
evolution will be followed up to and beyond the point of
instability to a nonaxisymmetric perturbation. To ensure
that contraction does not halt prior to this point, energy
generation by nuclear burning will be omitted. Ac-
cordingly, the basic equations are those describing the
motion of a self-gravitating, compressible gas with en-
tropy changes occurring only as a result of radiative
conduction.

In accordance with the argument that the detailed
properties of stellar matter cannot be of decisive im-
portance, we assume that the matter is a fully ionized
perfect gas and that radiation pressure may be neglected;
the ratio of specific heats v and the mean molecular
weight u are then constants. In addition, we assume that
the opacity « is independent of state variables.

(b) Units. In the interest of computational accuracy,
it is useful to express dimensions in terms of a time-
dependent length scale R(¢) chosen so as to largely
eliminate the protostar’s contraction. We also adopt Jit,
the protostar’s mass, as the unit of mass, 7, = (R3
GJM)!/2 as the unit of time, and T', = (umy/k)(GM/R)
as the unit of temperature. In terms of these basic units,
we now take R/, to be the unit of velocity, 1/7. to be
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SPH: Historical Overview

» Additions to SPH throughout time

Fluid dynamics

Gravity (in the original version, but not always included)
Radiation

Magnetic fields

Multi-fluid physics

One-fluid physics

Pressure-less particles
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» Primary reference: D. Price. Feb 2012.
Smoothed particle hydrodynamics and magnetohydrodynamics . J Comp Phys. 759, 231



) srH: Applications

¥

Astrophysics Engineering Gaming/Movies

sphNG dualSPHyiscs (unknown)
https://www.youtube.com/watch?v=B8mP9E75D08



» SPHERIC: European Research Community of all things SPH
(mostly engineering, some astrophysics)
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PHANTOMSPH Phantom
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The Phantom SPH code ++

Publically available at
https://phantomsph.bitbucket.i0
Reference:

D. J. Price, J. Wurster, C. Nixon,
T. S. Tricco, and 22 others.
(arXiv:1702.03930)

Contains only the "“best” algorithms
» e.g.one integration scheme, one artificial
viscosity algorithm, etc...

» Algorithms can be turned off/on as required,

and are fully parameterisable
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PHANTOMSPH Phantom

The Phantom SPH code v » Publically available at

: : = : https://phantomsph.bitbucket.io
» Reference:

D. J. Price, J. Wurster, C. Nixon,
T. S. Tricco, and 22 others.
(arXiv:1702.03930)

Turbulence
(e.g. Tricco, Price & Federrath 2016)
Test problems
Star formation (including non-ideal MHD)
(e.g. Wurster, Price & Bate 2016, 2017)




SPH vs Grid: Dividing the domain

» Given a domain, how do we divide it up?

i=
Q
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SPH vs Grid: Dividing the domain: Grid

» Where are the characteristics calculated?
» Eulerian Grid
» Cells of well-defined position and volume
» Evolve scalars at cell-centres
» Evolve Vectors at cell interfaces - . -

density [g/cm?]

L .
’
- » ‘ »
g 0 4x10!
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» . .
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5x10! e » _
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Grid from Zeus2D (Stone & Norman, 1992)



SPH vs Grid: Dividing the domain: SPH

» Given a domain, how do we divide it up?

» Lagrangian particles

L e .
L =oyrs { » BEach particle has a fixed mass
"""""""""""""" 1 » Characteristics are calculated

5)(1016 [ s a at the particles, IOCationS

T L EEEEEEEEEEE ]
-5)(1016 T T R T ST S |
| | N

l 0 5%x10!16 10




SPH vs Grid: Dividing the domain: SPH

» How do we distribute the initial particles for
uniform density (top)? For centrally condensed (bottom)? Does it matter (Morris, 1996)?

B e T O el My

Tk Lwlw
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Diehl, Rockefeller, Fryer, Riethmiller & Statler (2015); particle size represents spacing/volume



» How is density calculated?

T T T T T T
. /*\ .................. =0yrs
sxioe T ‘ .................... J/;\—
E\ lllllllllllll
& — —
N b e e e e e e s e e e e e e
_5x1016 | e s e e s e s s s e s s s e 2 e e s e s s s s s e o |
| ] ]
0 5%x101'6

SPH: Density

» Density summation

Nneigh
Z myW (r — 13, h),

b=1

p(r) =

» Where
» N is number of neighbours

» my 1s particle mass
» W is smoothing kernel

» Simplest kernel is a Gaussian:

, o r—r’)2
W(r—r,h):mexp [—( 3 ) }
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\74 !‘g SPH: Density: smoothing kernel

» How is density calculated?

L2 ~ Gaussian (h=1) ——
Gaussian (h=0.5)
1 L
N2
W(r—r' h) = %exp [—(r;;) ]
0.8 |
z 06 \
04 |
02 |
O ‘
0 0.5 1 1.5 2 2.5

q=x/h



% SPH: Density: Smoothing kernel

» How is density calculated?

0.7

0.6 |

~ Gaussian (h=1) ——
Cubic Spline (h=1) ——

W(lr—r'|,h) = 77w(q)

0.5 | q=|r—r'|/h
12-aP-(1-9¢° 0<q<l;
04 ! w(g) =09 7(2-49)° 1<qg<2;
) 0. q > 2,
=
03 |
02 |
0.1 |
0 0.5 1 1.5 2 2.5 3

q=x/h
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» How is density calculated?

Q%’ SPH: Density: Determining h

5x10'°
5 op
S S R
....... o .
_5x1016 | e s e e s e s s s e s s s e 2 e e s e s s s s s e o |
| ] ]
0 5%x101'6

» Density summation

Nneigh
Z myW (r — 13, h),

b=1

p(r)

» Where
» N is number of neighbours

» my 1s particle mass
» W is smoothing kernel

» What is h?

15



Q%’ SPH: Density: Determining h

» How is density calculated?

25 v » Density summation

5x10!16

z [cm]
o

_5x1016 | e s+ e e s e s s s e e 2 e e 2 e e s e s s s s s e o

Nneigh
p(r) = Z myW (r — 1y, h),
b=1
» Where

» N is number of neighbours

» my 1s particle mass
» W is smoothing kernel

» What is h?
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» How is density calculated?

. /"\ ......................
sage @ S .
E‘ lllllll e
S, B % )

N e i Novweee /= 0 e e e .
“ﬁ-ii{"'
_5x1016 | e s+ e e s e s s s e e 2 e e 2 e e s e s s s s s e o |
| |
5x10!16 5x10!16

SPH: Density: Determining h

» Density summation

Pa = Z mbWab (ra — Ty, ha)
b

» Smoothing length relation

()"
/’7 -
Pa

» These equations must be
iteratively solved

he =

» For a cubic spline in 3D,
there will be N,ypiq; ~ 57

17



\74 !§ SPH: Continuum Equations

» Continuum Equations:
» Continuity Equation

dp

= —pV - v
dt P
» Equation of Motion
d 1
= = _-yp
dt 0
» Energy Equation
d P
du _ _Pg
dt 0

» Equation of state (e.g.)

P = (vy—1)pu

18



SPH: Discrete Equations

» Discrete Equations:
» Density Equation

o\ /3
ZmbWab heg =1 (a>

> Equa‘uon of motlon

Py
Wa he) +
Zmb [ b( ) prb
> Energy Equatlon
dug T
T - Zmbv NV Wap(he)
» Equation of state (e.g. )
Po = (v—1)pauqg
» where
Wap(he) = Wap(ra — 7, ha); vy =0 — v

For conversions from continuum to discrete,
see (e.g.) Monaghan (1992, 2005), Springel (2010), Price (2012)



SPH: Pseudo-Code

» Pseudo-Code
> SPH

» Requires at most 2N? + N iterations per step

» If N=109, then there are 2x10!? iterations per step
» Using neighbour finding algorithms requires 2NN,

» If N=109, then there are 1.2x108 iterations per step

eign T N 1terations per step

....................... (=245 yrs
5x1016

do 1 = 1,N

do ] = laneigh
o Using j, calculate density of 1
S enddo
.............. = RS B
T 0'_ ............. T _ do 7 =1,N
.............. D] do j = 1, Nneign
L EEEEEmmm————— 1 Using j, calculate forces of 1
enddo
SO s 7 enddo
........................... - do 1 =1,N
B — ) énﬂ B T L —

Using updated forces,
new v,

determine
r & B of 1
enddo

20



PHANTOMSPH

»
P ® O - —— -—— - — -
.

- - - - . -
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% SPH: Discrete Equations: Missing terms

» Missing terms:
» Equation of motion

» Artificial viscosity : "'.‘
» Energy Equation . ‘ /
> Artificial conductivity § .| \ ' ' /
y | \ : | .,
) '-"‘" < e _"0
) -—'ﬂ - \.
! \\ .'

Various forms.
see (e.g.) Monaghan (1992, 2005), Springel (2010), Price (2012)

22
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» Maximal artificial viscosity and conductivity

PHANTOMSPH

SPH: Sod Shock Tube

- -
— - - - y——— - - - - - -
» .

>

|
: .
!

~

- T O - —y— -——— - — -
»
.
:
——————— e —

- -
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e SPMHD: Discrete Equations

» SPH equation of motion is derived via a the Lagrangian (Price & Monaghan, 2004)

» SPMHD equation of motion requires the variational principle of f 5 Ldt = 0, where

G, 1 (By\~ 1 B
0L =mgv, - 0v, — E my il dpp + ( b) 5,0b—|——Bb°5<—b)
; po | 210 \ Po Ho Pb

> After some math....

Szg ng
Z mp Dup ab(Pa) Qpp? vzzWab(hb)]
ij _ 1 i L i
Si=_(p +——pB2)69+ —pip
2140 %

24

Section 7 of Price (2012)



e SPMHD: Discrete Equations

» Discrete Equations:
» Density Equation

o\ /3
Pa = ZmbWab(ha); ha:n(—a>
b

» Equation of Motion

dv? ¥ Sy
@ p— d V'ZLWCL ha, b V‘ZLWGJ h
dt Zb:mb Qap? (he) T 0, 2 o ”)]
» Induction Equation
dB, 1 i i i o
=4 =~ my v BIVIWas (ha) — B, ViWas (ha)|
aPa
» Energy Equation ’
du, Py i i
T T oo > Mg Ve Was (ha)
afMa b

> MHD stress tensor

il = (pa N ng) 57 Lpipi
2140 140

» Note: In all SPMHD equations, B has been normalised such that B = B/,/j¢

25



el SPMHD: Continuum Equations

» Continuum Equations:
» Continuity Equation

dp
E = —,OV -V
» Equation of Motion
d 1 B? 1
- Ty [<P+ ) I— BB]
dt p 240 1o
» Induction Equation
dB
» Energy Equation
du P
- __Vv.
dt 0 Y

» Equation of state

26



eV SPMHD: Ryu-Jones Shock Tube

» As written on the previous slide

' :""-h' 'u '—::-'.'- : EO-J -%
ol & | : % . f
i -1 ¢ ' — ’
9 Il 5 ol H

! | :

| e

. ‘ ’
e} 5 »
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:
' ) ' | !
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O, L - v ST g )
PHANTOMSPH . s . ' . ——— .
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SV SPMHD: Ryu-Jones Shock Tube

» With maximal artificial viscosity, conductivity and resistivity

-
— - L -— - —-— -
L _:LT:’
“—.—J- - -
w
— - . - —]
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f‘ SPMHD: Artificial Viscosity

» Artificial viscosity

v, S5 +a 5P+,
= m VIiWab(ha) + =2 VI Wab(he
dt zb: b Qapgl a a ( a') prg a a ( )
ab _ _%pavsig,avab ) 'f'ab; Vab - 'f'ab <0
9o 0; else
A AV A
Usig,a — aa,V \/CS2,CL + Ui,a + 5 |’Ua,b : rab|
CVfZV c [0, 1] Calculated using (e.g.) the Cullen & Dehnen (2010) switch
BAV — 9

» Applied only to shocks

29
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ol SPMHD: Artificial Resistivity

»
Y
!

» Artificial resistivity (Tricco & Price, 2013)

dB? 1 L S dB*
= = - . BJVJWCL ha — Blv’ v]Wa ha:| .
dt Qupa ;mb {Uab ‘o b( ) aVab Va b( ) + dt art
dB, _ p_azmsz' Qg Usi af‘ibvéwab(ha) O‘E”sig,bfébv‘éwab(hb)
dt art 2 b @ QGP?L prg
dhy = v
i, = Bi- B
Usig,a — \/Cs2,a + Ui,a
. [ he |VBy| )
B a a
o, = min , 1
(5.
dB: |
vl = (T35
) j a

» Always applied if there is a gradient in the magnetic field (i.e. |[VB|>0)

30



f‘ SPMHD: Artificial Resistivity

» Artificial resistivity (Price, et al, submitted)

L= - BV Wa ha — Blv?, V! Wa ha :| .
dt Qapa ;mb {Ua,b aV a b( ) avab a b( ) + dt -
dB! Da . | VI Wa(ha) VI Wy (he)
- - 5 sig,a B; 4 - & a
dt art 2 zb:mba frigabZab Qapczz " pr%
L = BB
Usig,ab — "Uab X fﬁab‘
af = 1

» Always applied for non-zero velocity
» Less resistive that that from Tricco & Price (2013)

31



f‘ SPMHD: Artificial Resistivity

» Price et. al. (2017) artificial resistivity

Usig,ab — ‘fvab X fﬁab‘

B = 1

» Tricco & Price (2013)

Usig,a — \/CSQ,a, + Ui,a
 (hy|VB,] )
B a a
o, = min , 1
( | B,

» Tricco & Price (2013) with alternate
averaging

Waurster, Bate, Price & Tricco (2017)

0.5

density |



f‘ SPMHD: Artificial Resistivity

0.0013

0.0012

0.0011

0.001

Emag

0.0009

0.0008

0.0007

Waurster, Bate, Price & Tricco (2017)

0.5

density
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el SPMHD: Brio-Wu Shock Tube

» With maximal artificial viscosity, conductivity and resistivity

PHANTOMSPH

34



e SPMHD: Discrete Equations

» Discrete Equations:
» Density Equation

m 1/3
ZmbWab(ha); ha = (—a>

b .
» Momentum Equation

dv. Si + 4 Sy + a5
a a VJ Wb (h VJ W (h
dt Zmb W b(ha) + op b(hw)
> Inductlon Equation
dB* 1 S |
O I Uy BIVI Wb (ha) — Biol, ViWa (ha)] +
» Energy Equatlon
du du
a i ; " du
dt Qup? Zmb”abv o(ha) + .

> MHD stress tensor

g 1 ) 1 . .
S = (P + —BQ) §Y + —B'BJ
2140 1o

35
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e SPMHD: Discrete Equations

» Discrete Equations:
» Density Equation

mgq
Pa — ZmbWab(ha); ha =11 (—

b Pa
» Momentum Equation
dv? S 4 g2t _ .
< = < VI Weap(hg
di zb:mb QupzvalVabli)
» Induction Equation '
dB? 1 S o dB?
@ - W BIVIWa (ha) = Bivd ViWa, (ha)| + =12
dt Qapazb:mb [U“b 2 VaWab (ha) = Bovey VaWan (ha) | + =5 art
» Energy Equation
du P L du
¢ = - NV Wan(ha —
dt Q2 2ot Vo Wan(ha) + dt |

> MHD stress tensor

y 1 . 1 . .
SY = — (Pa + —Bg) §Y + —B'BJ
2110 140

36



,‘ SPMHD: Tensile Instability

» Tensile instability: the artificial clumping due to negative pressure (i.e. attractive forces)

» particle distribution & x-component of the magnetic field in the 2.5D circularly
polarized Alfven wave test using the (unstable) conservative SPMHD force (left figure)
and with a stable formulation (right figure), shown after 1 wave crossing time.

09 09

0.85 0.85

0.8 0.8
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f‘ SPMHD: Tensile Instability

» Momentum Equation (excluding artificial viscosity)

dv 1 BQ) 1 ]
— = ——V||P+—|I-—BB
dt p K 2110 1o
— _vP_ 1 EVBQ—V-(BB)]
p o Hop [2
P 1 [1 1
= vk 1 —VBQ—{—VBQ—BX(VXB)+B(V'B)}]
p o pop |2 2
VP (VxB)xB/ B(V-B) = ( physically
p Lo P Lo P # 0 numerically

» The magnetic monopole term exists when the equations conserve energy

38



f* SPMHD: Tensile Instability

» Momentum equation inherently includes V.B # 0, thus needs to be removed
(Barve, Omang & Trulsen 2001, 2004; Tricco & Price 2012)

Z S ij (ha) + S’ VI Was(hs)
my a a ab a prg a ab b

S

(P 1+ LB ) oY & iB;Bg;
2140 140

> f,=1: removes magnetic monopoles; does not conserve energy or momentum
> f,=0: conserves energy & momentum; includes unphysical magnetic monopoles
» We name f, > 0 the Borve correction

39



f‘ SPMHD: Tensile Instability: Brio-Wu Shock

» With maximal artificial viscosity, conductivity and resistivity and Berve correction

» .
. ; : }
| | . _' :
, s 1 . ! ] : ] ]
o) | v—J . - § —
~ » ] - - i - » - » . . - . » » - ~ - - - - - ‘. » . - - - . - - - - “
PHANTOMSPH -
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» What is the optimal f, ?
removes magnetic monopoles; does not conserve energy or momentum
conserves energy & momentum; includes unphysical magnetic monopoles

(¢©

PHANTOMSPH

2 SPMHD: Tensile Instability: Brio-Wu Shock

> f.=1:
> f,=0:

Total Energy

0.00203

0.00203

0.00202

0.00202

0.00201

0.00201

0.00200

0.00200

0.00199

0.00199

=1 ——
=0 ——

0.02

0.04

Time

0.06

0.08

0.1
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,‘ SPMHD: Tensile Instability: Brio-Wu Shock

» What is the optimal f, ?
» f, = 1: removes magnetic monopoles; does not conserve energy or momentum
» f,=0: conserves energy & momentum; includes unphysical magnetic monopoles

Ja=1 Ja=0

\ i \¢ :

i ? b J: { = 9} i

‘.t..,- .. v - \\\ﬁd yt LR
m N~ P\ 0l

| ' ' |

' | - _ l
1 ) ' =

(] | | 4

- i —

PHANTOMSPH
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e SPMHD: Tensile Instability: Ryu-Jones

» What is the optimal f, ?

» f, = 1. removes magnetic monopoles; does not conserve energy or momentum
» f,=0: conserves energy & momentum; includes unphysical magnetic monopoles

..................

PHANTOMSPH

ijjlf

.........

..........

---------

...........
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f‘ SPMHD: Tensile Instability

» What is the optimal f, ?
» f, = 1: removes magnetic monopoles; does not conserve energy or momentum
» f,=0: conserves energy & momentum; includes unphysical magnetic monopoles

> Recall motion in 3D without the Borve correction

v SV S,
= = Mp C NI Wb (he) + =25V Wy (he
dt zb: Qo p2 (fia) Qup (he)

S = _ (pa N ng) 574 L pig
2140 140

44



f* SPMHD: Tensile Instability

» What is the optimal f, ?
» f, = 1: removes magnetic monopoles; does not conserve energy or momentum
» f,=0: conserves energy & momentum; includes unphysical magnetic monopoles

> Recall motion in 3D without the Borve correction

Zm S — VI Wab(ha) + S’ VI Was(hs)
b ab aVVab\ltp
a,Oa, pr%

S;L'Lj_ (p —i—iB)éij—FiB;Bg

20 o
» Consider motion in a 1-D calculation:
2 1 2
d — —B Py — me,x dWas
- Z L -+ 2
Qapg Oy p; dz

x

v
= > 0 , therefore the force is attractive, which leads to the

1
P — —B <0
> If 2110 , then &

Tensile instability

45



f‘ SPMHD: Tensile Instability

» What is the optimal f, ?
» f, = 1: removes magnetic monopoles; does not conserve energy or momentum
» f,=0: conserves energy & momentum; includes unphysical magnetic monopoles

» Consider plasma f:
P, gas 2,LLOP gas

» [ >>1: Evolution is dominated by gas pressure
» f <<1: Evolution is dominated by magnetic pressure & leads to Tensile instability

b=

46
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,‘ SPMHD: Tensile Instability: Borve correction

13
X

» What is the optimal f, ?
» f, = 1: removes magnetic monopoles; does not conserve energy or momentum

» f,=0: conserves energy & momentum; includes unphysical magnetic monopoles

Brio-Wu (unstable with 7, = 0) Ryu-Jones (stable with f, = 0)

s I

glae

‘, » " » . ) . ‘ ] J . ) ) ] ) ‘
PHANTOMSPH v : : " ' - : 47
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S SPMHD: Tensile Instability: Borve correction

» What is the optimal f, ?
> f.=1 (Boarve, Omang & Trulsen 2001; Tricco & Price 2012)
» 0< f, <% (Berve, Omang & Trulsen 2004)

» If unstable only for magnetically dominated regions (i.e. f < 1) , then only subtract there:

L; Ba <1
Ja=4q 2—08; 1<fa<2
O, /8a>2

48
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> Ja=JalB)

R /e 29 A E=
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e
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e SPMHD: Divergence Cleaning

» As previously shown, VB = 0 is not guaranteed by the SPMHD equations
» Option 1: Ignore

hV - B
|B|

» Monitor and hope 1t remains small

50



e SPMHD: Divergence Cleaning

» As previously shown, VB = 0 is not guaranteed by the SPMHD equations
» Option 2: Clean
» c¢.g. constrained hyperbolic/parabolic divergence cleaning
(Tricco, Price & Bate, 2016 using Dedner et al 2002 and Price & Monaghan 2005)

» Introduce a (non-physical) scalar field, y, with energy
wz
2/”LOIOCh

» Continuum equations

dB
5 =B VIV-B(V.-v)-Vy,

d (v 1y 1(y
i) =av w2 (5) -3 (5) v

where ¢, 1s the characteristic or wave-cleaning speed
» Discrete equations

(), -~ Tn o

d W Ch,a
" (—) = Qoo Zmb(Ba Bp) - VaWap (ha) — — (—)

Ch

Ey =

va Wab (ha) + va Wab (hb):|
1
2

(—) Zmb(va V) - VaWap (ha).



e SPMHD: Divergence Cleaning

» As previously shown, VB = 0 is not guaranteed by the SPMHD equations
» Option 2: Clean
» c¢.g. constrained hyperbolic/parabolic divergence cleaning
(Tricco, Price & Bate, 2016 using Dedner et al 2002 and Price & Monaghan 2005)

» Introduce a (non-physical) scalar field, y, with energy

wz
Cy = Hyperbolic Transport
2Hop Ch Parabolic damping
» Continuum equations Compression / rarefaction
dB _ (B-V)v—B(Y
dt

where ¢, 1s the characteristic or wave-cleaning speed
» Discrete equations

dB
(d—t") =—paZmb[Q‘”p2vawab(ha>+ vawabmb)}
14 alPa
1
2

d W Ch,a
" (—) = Qoo Zmb(Ba By) - VaWap (ha) — — (—)

Ch

(—) Zmb(va V) - VaWap (ha).



" SPMHD: Divergence Cleaning

» As previously shown, VB = 0 is not guaranteed by the SPMHD equations
» Option 2: Clean
» e¢.g. constrained hyperbolic/parabolic divergence cleaning
(Tricco, Price & Bate, 2016); Fig 1.

Norcleaning t=0ft=0.33

div B
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e SPMHD: Divergence Cleaning

» As previously shown, VB = 0 is not guaranteed by the SPMHD equations
» Option 3: Avoid (i.e. construction equations that enforce divergence-free)
» Constrained transport used by grid codes is divergence-free
» Constrained transport cannot be applied to SPMHD since it required computation
of surface rather than volume integrals.
» Euler Potentials
» Closest analogy to constrained transport in SPMHD
» Cannot represent winding motion or prevent dynamo processes
» Non-trivial to implement resistive terms
» Been used (e.g. Price & Bate 2007, 2008, 2009) and since abandoned in
favour of the induction equation and cleaning
» Vector Potentials
» Numerically unstable (Price 2010)
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eV SPMHD: Boundary Conditions

» Boundaries are optional in SPH
» e.g. collapse of a sphere
» ¢.g. evolution of a turbulent sphere (Bate’s cluster models)
» e.g. galaxy merger simulation (Wurster & Thacker 2013a,b)
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e SPMHD: Boundary Conditions

» Boundaries in SPH
» Fixed
» Periodic
» For Sod shock tube, periodic in y & z and fixed in x
» In the image, dot are active particles, circles are boundary particles

I I —— .
) ' t=0yrs -
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S SPMHD: Boundary Conditions

» How do we treat boundaries for the gravitational collapse of a magnetised sphere?

density [g/cm?]

5x101'¢
- 6x10°18

4x10°18

z [cm]
=)

2x1018

-5x10'¢

-5x101° 0 5%x1016
X [cm]
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,‘ SPMHD: Boundary Conditions

» Embed sphere in low density medium (e.g. with density ratio 30:1)
» Thread magnetic field throughout the entire domain
» Use periodic boundaries at the edge of the box

5x101'¢

z [cm]
=)

-5x10'¢

-5x101° 0 5%x1016
X [cm]

density [g/cm?]

6x1018

4x10°18

2x1018
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SPMHD: Example: Star formation

t = 24948 yrs t = 24949 yrs

z[AU]

E.g. Bate, Tricco & Price (2014)
Video: https://www.astro.ex.ac.uk/people/mbate/Animations/BateTriccoPrice2013 MF05.mov
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S SPMHD: Example: Star formation

LN

» Cross section of particle positions
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Running Phantom
PHANTOMSPH

»Install Phantom in the home directory

»In your run-directory, call
phantom/scripts/writemake.sh SETUP > Makefile
»where SETUP = shock for the Sod shock tube test, or SETUP = mhdshock for MHD shocks

»Compile Phantom via
make SYSTEM=gfortran; make setup SYSTEM=gfortran
»where gfortran can be replaced with other systems, e.g., ifort

»Run phantom setup via
./phantomsetup INFILE
»where INFILE is the run name (e.g.) sod

»Modify INFILE.in as required

»Run phantom via
./phantom INFILE.in



el Conclusions

»Particles of fixed mass are used to represent the fluid
»Properties are calculated at a particle’s position using a smoothing kernel and its neighbours
»Smoothing length is adaptive
»Smoothed particle magnetohydrodynamics requires
» artificial resistivity for stability
»subtraction of magnetic monopole from equation of motion (tensile instability)
»>divergence cleaning to remove magnetic monopoles
»boundaries
»This presentation is available at: http://www.astro.ex.ac.uk/people/wurster/files/spmhd.pdf
»Contact info: j.wurster [at] exeter.ac.uk

"Always code as if the guy who ends up
maintaining your code will be a violent

psychopath who knows where you live."

~ John Woods

James Wurster
Computational MHD Workshop 2017: University of Leeds, Dec 12, 2017
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