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Introduction

We propose and analyse numerical schemes for the simulation of a
specific McKean–Vlasov equation, where the interaction derives
from feedback on the system when a certain threshold is hit.

Yt = Y0 +Wt − αLt , t ∈ [0,T ], (1)

Lt = P(τ ≤ t), t ∈ [0,T ], (2)

τ = inf{t ∈ [0,T ] : Yt ≤ 0}, (3)

where α,T ∈ R+, W is a standard Brownian motion and Y0 is

R+-valued random variable, independent of W .
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Introduction

One motivation for studying these equations comes from
mathematical finance, in particular, systemic risk.

A large interconnected banking network can be approximated
by a particle system with interactions by which the default of
one firm, modeled as the hitting of a lower default threshold of
its value, causes a downward move in the firm value of others.

More details can be found in [Hambly et al., 2018] and
[Nadtochiy and Shkolnikov, 2017].

This model can also be viewed as the large pool limit of a
structural default model for a pool of firms where
interconnectivity is caused by mutual liabilities, such as in
[Lipton, 2016]. The limit results can be found in
[Lipton et al., 2018].
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Introduction

Theoretical properties of (1)–(3) have been studied in
[Hambly et al., 2018], who prove the existence of a
differentiable solution (Lt)0<t<t∗ up to an “explosion time” t∗.

Conversely, they show that L cannot be continuous for all t for
α above a threshold determined by the law of Y0. Such
systemic events where discontinuities occur are also referred to
as “blow-ups” in the literature.

The question of the constructive solution, however, remained
open.
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Introduction

The left plot shows the formation of a discontinuity in the loss
function t → Lt for increasing α, with Y0 ∼ Gamma(1.5, 0.5). The
density of YT for T before and after the shock is displayed in the
right panel.
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Figure: (a) Lt for different α near the jump (b) Distribution of YT for
YT > 0 before and after the jump.
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Discrete time Monte Carlo scheme for simulation of the loss

process

Require: N — number of Monte Carlo paths
Require: n — number of time steps: 0 < t1 < t2 < . . . < tn
1: Draw N samples of Y0 (from initial distribution) and W (a Brow-

nian path)
2: Define L̂0 = 0
3: for i = 1 : n do

4: Estimate L̃ti by L̂Nti =
1
N

∑N
k=1 1{minj<i Ŷ

(k)
tj

≤0}

5: for k = 1 : N do

6: Update Ŷ
(k)
ti

= Y
(k)
0 +W

(k)
ti

− αL̂Nti
7: end for

8: end for
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Assumptions and convergence results

Hölder continuity at 0 of the initial density, is key for the
regularity of the solution. The Hölder exponent will also limit
the rate of convergence of the discrete time schemes.

Assumption

We assume that Y0 has a density fY0
supported on R+ such that

fY0
(x) ≤ Bxβ, x ≥ 0 (4)

for some β ∈ (0, 1].
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Assumptions and convergence results

Under Assumption 1, we can refer to Theorem 1.8 in
[Hambly et al., 2018] for the existence of a unique,
differentiable solution t → Lt for (1)–(3) up to time

t∗ := sup {t > 0 : ||L||H1(0,t) < ∞} ∈ [0,∞],

and a corresponding B̂ such that for every t < t∗

L′t ≤ B̂t−
1−β

2 a.e. (5)

Integrating (5), we have for future reference a bound for Lt ,

Lt ≤ B̃t
1+β

2 , (6)

where B̃ = 2B̂/(1 + β).
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Assumptions and convergence results

The following assumption will be used to control the
propagation of the discretisation error, by bounding the density
(especially at 0) of the running minimum of Y and its
approximations.

Assumption

We assume that T < min(T ∗, t∗), where T ∗ is defined by

αB

[
√

2T ∗

π
+ αB̃(T ∗)

1+β
2

]β

= 1, (7)

with B and B̃ the smallest constants such that (4) and (6) hold for

given β.
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Assumptions and convergence results

Consider a uniform time mesh 0 = t0 < t1 < . . . < tn = T , where
ti − ti−1 = h, and a discretized process, for 1 ≤ i ≤ n,

Ỹti = Y0 +Wti − αL̃ti , (8)

L̃ti = P(τ̃ < ti), (9)

τ̃ = min
0≤j≤n

{Ỹtj ≤ 0}. (10)

We extend L̃ti to [0,T ] by setting L̃s = L̃ti−1
for ti−1 < s < ti .
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Assumptions and convergence results: main results

Theorem (1)

Consider L̃ti from (8)–(10) and Lt from (1)–(3). Then, for any

δ > 0, there exists C > 0 independent of h such that

max
i≤n

|L̃ti − Lti | ≤ Ch
1
2
−δ. (11)

Theorem (2)

For all i ≤ n,

L̂ti
P

−−−−→
N→∞

L̃ti . (12)
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Proof of Theorem 1

We split the error into two contributions

|L̃ti − Lti | =

∣

∣

∣

∣

P

(

min
j<i

Ỹtj > 0

)

− P

(

inf
s<ti

Ys > 0

)∣

∣

∣

∣

≤

∣

∣

∣

∣

P

(

min
j<i

Ỹtj > 0

)

− P

(

min
j<i

Ytj > 0

)∣

∣

∣

∣

+

∣

∣

∣

∣

P

(

min
j<i

Ytj > 0

)

− P

(

inf
s<ti

Ys > 0

)∣

∣

∣

∣

.

The second term can be estimated as

0 ≤ P

(

min
j<i

Ytj > 0

)

− P

(

inf
s<ti

Ys > 0

)

≤ γh
1
2
−δ,

for any δ > 0.

Vadim Kaushansky (University of Oxford) Simulation of particle systems



12/27

Proof of Theorem 1

We split the error into two contributions

|L̃ti − Lti | =

∣

∣

∣

∣

P

(

min
j<i
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Proof of Theorem 1

Now we shall proceed by induction to estimate |L̃ti − Lti |.
For t0 = 0, we have L0 = L̃0. Assume we have shown
L̃tj = Ltj − C̃jh

1
2
−δ for j < i , where C̃j ≥ 0 as L̃tj ≤ Ltj . Then,

The first term can be estimated as

P

(

min
j<i

Ỹtj > 0

)

− P

(

min
j<i

Ytj > 0

)

= P

(

min
j<i

(

Ytj + αC̃jh
1
2
−δ

)

> 0

)

− P

(

min
j<i

Ytj > 0

)

≤ P

(

min
j<i

Ytj > −αmax
j<i

C̃jh
1
2
−δ

)

− P

(

min
j<i

Ytj > 0

)

= F̄i (0)− F̄i

(

−αmax
j<i

C̃jh
1
2
−δ

)

≤ αmax
j<i

C̃jh
1
2
−δ sup

θ∈[0,1]
ϕ̄i

(

−θαmax
j<i

C̃jh
1
2
−δ

)
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Proof of Theorem 1
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Proof of Theorem 1

We got an estimate for ϕ̄i

ϕ̄i

(

−θ
α

2
max
j<i

C̃jh
1
2
−δ

)

≤ B

[

√

2ti
π

+ αB̃t
1+β

2
i

]β

,

As a result, we have the following inequality for C̃i ,

C̃i ≤ αmax
j<i

C̃jB

[

√

2ti
π

+ αB̃t
1+β

2
i

]β

+ γ,

Hence C̃i is bounded independent of i and h by Assumption 2.

By induction we get (3).

We also proved that the result of Theorem 1 can be extended
up to the explosion time t∗ under certain conditions on the
parameters.
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Main results

Theorem

Consider L̃ti from (8)–(10) and Lt from (1)–(3). Then, for any

δ > 0, there exists C > 0 independent of h such that

max
i≤n

|L̃ti − Lti | ≤ Ch
1
2
−δ.

Theorem

For all i ≤ n,

L̂ti
P

−−−−→
N→∞

L̃ti .
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Proof of Theorem 2

We prove the convergence in probability of

L̂ti =
1

N

N
∑

k=1

1

{minj<i Ŷ
(k)
tj

≤0}

in Algorithm 1 to L̃ti as N → ∞.

We note that we cannot directly apply the law of large
numbers, as the summands are dependent through L̂Ntj , j < i .

However, we show that the dependence diminishes (i.e., the
covariance goes to zero) as N → ∞, which easily gives
convergence, albeit without a Central Limit Theorem-type
error estimate or a rate for the variance.
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Proof of Theorem 2

First, we formulate an auxiliary lemma.

Lemma

Consider i ≤ n. Assume for all j < i

L̂Ntj
P
−→ L̃tj .

Then,

E[L̂Nti ] −−−−→
N→∞

L̃ti

V[L̂Nti ] −−−−→
N→∞

0.
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Proof of Theorem 2

The proof is immediate by induction. The statement is true for
i = 0. Now take i ≥ 1.

By the Lemma, there exists N∗ such that for all N > N∗,

|E[L̂Nti ]− L̃ti | ≤
ε

2
.

Thus, by Chebyshev’s inequality, we have

P(|L̂Nti − L̃ti | > ε) ≤ P

(

|L̂Nti − E[L̂Nti ]| >
ε

2

)

≤
4V[L̂Nti ]

ε2
.

Using again the Lemma, we have that V[L̂Nti ] −−−−→N→∞
0. Hence,

L̂Nti
P

−−−−→
N→∞

L̃ti ,

for i and by induction we have proved the theorem.

Vadim Kaushansky (University of Oxford) Simulation of particle systems



19/27

Convergence improvement: Brownian bridges

Next, we improve our scheme by using a Brownian bridge
strategy to estimate the hitting probabilities.

This is very similar to barrier option pricing.

In order to do this, we consider the process

Y̆t = Y0 +Wt − αL̆t , t ∈ [ti , ti+1), (13)

L̆t = P(τ̆ < ti), t ∈ [ti , ti+1), (14)

τ̆ = inf
0≤s≤T

{Y̆s ≤ 0}. (15)

Then, for each Brownian path (W
(k)
t )t≥0, we compute

Ȳ
(k)
t = Y

(k)
0 +W

(k)
t − αL̄Nt in (ti , ti+1), where L̄Nt is an

N-sample estimator of L̆ti given on the next slide.
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Convergence improvement: Brownian bridges

Hence, using Brownian bridges, we compute

p
(k)
ti

= P

(

inf
s<ti

Ȳ
(k)
s > 0|Ȳ

(k)
0 , . . . , Ȳ

(k)
ti

)

=
i

∏

j=1

P

(

inf
s∈[tj−1,tj )

Ȳ
(k)
s > 0 | Ȳ

(k)
tj−1

, Ȳ
(k)
tj

)

=
i

∏

j=1



1 − exp



−
2(Ȳ

(k)
tj−1

∨ 0)(Ȳ
(k)
tj−

∨ 0)

h







 .

Thus, a natural choice for L̄Nti is

L̄Nti =
1

N

N
∑

k=1

(

1 − p
(k)
ti

)

. (16)
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Discrete time scheme for simulation of the loss process using

Brownian bridges

As a result, the new algorithm with the Brownian bridge
modification is the following

Require: N — number of Monte Carlo paths
Require: n — number of time steps: 0 < t1 < t2 < . . . < tn
1: Draw N samples Y0 (from the initial distribution) and W (a

Brownian path)
2: for i = 1 : n do

3: Estimate L̄Nti =
1
N

∑N
k=1

(

1 − p
(k)
ti

)

4: for k = 1 : N do

5: Update Ȳ
(k)
ti

= Y
(k)
0 +W

(k)
ti

− αL̄Nti
6: end for

7: end for
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Main results: Modification using Brownian bridges

The convergence rate for (14) is given in the following theorem

Theorem

Consider L̆t from (13)–(15) and Lt from (1)–(3), β ∈ (0, 1] from

Assumption 1. Then, there exists C > 0 independent of h such that

max
i≤n

|L̆ti − Lti | ≤ Ch
1+β

2 .

The convergence rate can be improved to 1 using a
non-uniform grid

Corollary

Consider a non-uniform time mesh ti = (ih)
2

1+β for 0 ≤ i ≤ n with

h = T
1+β

2 /n. Then, there exists C1 > 0, independent of h, such that

max
i≤n

|L̆ti − Lti | ≤ C1h.
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We shall proceed by induction. Assume we have shown that

|L̆tj − Ltj | ≤ Cjh
1+β
2 for all j < i with some Cj > 0, and we want to

estimate |L̆ti − Lti |.

First, we have

sup
tj≤s<tj+1

|L̆s − Ls | ≤ |L̆tj − Ltj |+ B̂h
1+β
2 ≤ (Cj + B̂)h

1+β
2 ,

since L′
ζ ≤ B̂ζ−

1−β
2 .

Now consider

|L̆ti − Lti | =

∣

∣

∣

∣

P

(

inf
s≤ti

Y̆s > 0

)

− P

(

inf
s≤ti

Ys > 0

)∣

∣

∣

∣

=

∣

∣

∣

∣

P

(

inf
s≤ti

(Ys + α(Ls − L̆s)) > 0

)

− P

(

inf
s≤ti

Ys > 0

)∣

∣

∣

∣

≤

∣

∣

∣

∣

P

(

inf
s≤ti

Ys > −α sup
s<ti

|L̆s − Ls |

)

− P

(

inf
s≤ti

Ys > 0

)
∣

∣

∣

∣

≤ P

(

inf
s≤ti

Ys > −αmax
j<i

(Cj + B̂)h
1+β
2

)

− P

(

inf
s≤ti

Ys > 0

)

≤ αmax
j<i

(Cj + B̂) sup
θ∈[0,1]

ϕ

(

−θαmax
j<i

(Cj + B̂)h
1+β
2

)

h
1+β
2 ,

where ϕi (x) is the density of infs<ti Ys .
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Then, using an estimate for the density, we have

Ci ≤ αB max
j<i

(Cj + B̂)

[

√

2ti
π

+ αB̃t
1+β

2
i

]β

≤ γ

i
∑

k=0

(αB)k
k
∏

j=1

[

√

2tj
π

+ αB̃t
1+β

2
j

]β

,

where γ = αBB̂

[

√

2T
π

+ αB̃T
1+β

2

]β

.

Thus, Ci is bounded independent of h and i by (7).

By induction we get the proof.
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Numerical results
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Figure: Error of the loss process at t = T for Y0 ∼ Gamma(3/2, 1/2):
(a) for increasing number n of timesteps; (b) for increasing number N of
samples, both for Algorithms 1 and 2.
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Numerical results
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Figure: Lt and L′t for different values of α.
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Conclusion

We have developed particle methods with explicit timestepping for
the simulation of (1)-(3).

Convergence with a rate up to 1 in the timestep is shown under a
condition on the model parameters and time horizon, when the loss
function is differentiable.

This opens up several theoretical and practical questions. The
efficiency of the method could be significantly improved by a simple
application of multilevel simulation.

Theoretically, one would like guaranteed convergence also in the
blow-up regime. This requires the choice of an appropriate metric –
the Skorokhod distance may be suitable.

Lastly, it would be interesting to investigate the extension to the

models in [Nadtochiy and Shkolnikov, 2017] and

[Delarue et al., 2015] in more detail.
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