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Unwinding large positions is part of day-to-day
business.

... of banks, funds, insurance companies, energy companies, ...

I Sell x shares of · · · within T minutes using market orders.

I Limited market liquidity leads to a price impact.
I Aim: Optimize trading strategies to minimize execution costs.

A. Popier (Le Mans Université) MFG of Optimal Liquidation. Leeds, September 10th, 2018. 4 / 39



Price impact modelling.

I Fix an initial position x ∈ R and a time horizon T .

I Execution strategy X : finite variation process satisfying X0− = x and
XT + = 0.

I There is an unaffected price process S0. To disentangle investment from
execution strategies, one often assumes that S0 is a martingale.

I A price impact model assigns to each execution strategy X a realized
price process SX .

I Typically: SX ≥ S0 if X is a pure buying strategy and SX ≤ S0 if X is a
pure selling strategy
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Continuous-time Almgren & Chriss model (2000).

I Execution strategies have absolutely continuous paths:

Xt = x −
∫ t

0
ξsds.

I Price impact consists of two components

SX
t = S0

t +

∫ t

0
g(ξs)ds︸ ︷︷ ︸

permanent

+ h(ξt )︸ ︷︷ ︸
temporary

.

I Gatheral (2010): Take g(x) = −κx to rule out price manipulation.
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Expected Revenues.

Assume

SX
t = S0

t −
∫ t

0
κsξsds − ηtξt .

Revenues obtained from following X (with XT = 0)

RT (X ) = −
∫ T

0
SX

t dXt .

Integrating by parts decomposition of expected revenues

E [RT (X )] = xS0
0︸︷︷︸

naive book value

− E

[∫ T

0
κsξsXsds

]
︸ ︷︷ ︸

costs entailed by perm impact

− E

[∫ T

0
ηs(ξs)2ds

]
︸ ︷︷ ︸

costs entailed by temp impact
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(Non exhaustive) literature review.

I Mean-variance optimization: Almgren & Chriss (1999, 2000), Almgren (2003),
Lorenz & Almgren (2011), ...

I Expected-Utility maximization: Schied & Schöneborn (2009), Schied,
Schöneborn & Tehranchi (2010), Schöneborn (2011), ...

I Time-averaged Risk Measures: Gatheral & Schied (2011), Forsyth, Kennedy,
Tse & Windcliff (2012), Ankirchner & Kruse (2012), ...

I Overview : Guéant (2016): The Financial Mathematics of Market Liquidity: From
Optimal Execution to Market Making.

Extensions
Including a dark pool.
Models with transient impact.
Models with non aggresive strategies.
...
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Linear quadratic control problem.

Admissible controls: ξ ∈ A(t , x) iff

Xs = x −
∫ s

t
ξudu, s ∈ [t ,T ]

with the terminal state constraint: XT = 0

Cost parameters η, λ and κ: non negative and random.
I Expected running execution costs

J (t , ξ) = E

∫ T

t

ηs(ξs)2 + κsξsXs + λs(Xs)2︸ ︷︷ ︸
risk aversion

ds
∣∣∣∣Ft


I Value function

v(t , x) = inf
ξ∈A(t,x)

J (t , ξ)
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Related literature.

I Penalization and monotone convergence argument.
A.P. (2006).

S. Ankirchner, M. Jeanblanc & T. Kruse (2013).

P. Graewe, U. Horst & J. Qiu (2015).

T. Kruse & A.P. (2016).

S. Ankirchner, A. Fromm, T. Kruse & A.P. (2018).

I Determination of the asymptotic behaviour, characterization in terms of a
PDE or a BSDE and fixed point argument.

P. Graewe, U. Horst & E. Séré (2017).

P. Graewe, U. Horst (2017).
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Game of optimal liquidation between N players.

Transaction price for each player i = 1, . . . ,N

Si
t = S0

t −
∫ t

0
κi

s

 1
N

N∑
j=1

ξj
s

 ds − ηi
tξ

i
t .

Optimization problem of player i = 1, . . . ,N: minimize

JN,i
(
~ξ
)

= E
∫ T

0

κi
t

 1
N

N∑
j=1

ξj
t

X i
t + ηi

t (ξ
i
t )

2 + λi
t (X

i
t )2

dt

subject to the state dynamics

dX i
t = −ξi

t dt , X i
0 = x i and X i

T = 0.

~ξ = (ξ1, · · · , ξN): vector of strategies of each player.
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Game with asymmetric information.

Probabilistic setting:
(Ω,F ,F = {Ft , t ≥ 0},P) be a probability space.
Carries independent standard Brownian motions W 0,W 1, ...,W N .

Filtrations:

Fi := (F i
t ,0 ≤ t ≤ T ), with F i

t := σ(W 0
s ,W

i
s,0 ≤ s ≤ t).

Assumptions on the processes (κi , ηi , λi )

Progressively measurable with respect to the augmented σ-field Fi .
Conditionally independent and identically distributed, given W 0.

A. Popier (Le Mans Université) MFG of Optimal Liquidation. Leeds, September 10th, 2018. 13 / 39



Literature.
Probabilistic approach for MFGs:

R. Carmona & F. Delarue (2013): stochastic maximum principle and
McKean-Vlasov FBSDEs.
R. Carmona, F. Delarue & D. Lacker (2016): MFGs with common noise.
R. Carmona, F. Delarue (2018): Probabilistic Theory of Mean Field
Games with Applications I-II.

Closest papers:
R. Carmona & D. Lacker (2015).

X. Huang, S. Jaimungal & M. Nourian (2015).

P. Cardaliaguet & C. Lehalle (2017).

Novelty
I Private information and common noise.
I Interaction through the impact of their strategies.
I Terminal constraint.
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Formal problem.

1 Fix a F0 progressively measurable process µ (in some suitable space).
F0 := (F0

t , 0 ≤ t ≤ T ) with F0
t = σ(W 0

s , 0 ≤ s ≤ t).
2 Solve the parameterized constrained optimization problem:

inf
ξ
E

[∫ T

0

(
κsµsXs + ηsξ

2
s + λsX 2

s
)

ds

]

s.t.
dXt = −ξt dt , X0 = x and XT = 0.

W 0 and W are independent.
F := (Ft , 0 ≤ t ≤ T ) with Ft := σ(W 0

s ,Ws, 0 ≤ s ≤ t).
κ, η and λ are F progressively measurable.

3 Search for the fixed point

µt = E[ξ∗t |F0
t ], for a.e. t ∈ [0,T ],

where ξ∗ is the optimal strategy of the second step.
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Probabilistic approach

Notation: for a filtration G

Lp
G([0,T ]× Ω; I) =

u ∈ PG([0,T ]× Ω; I); E

(∫ T

0
|u(s, ω)|2ds

)p/2

<∞

 ;

Sp
G([0,T ]× Ω; I) =

{
u ∈ PG([0,T ]× Ω; I); E

(
sup

0≤s≤T
|u(s, ω)|p

)
<∞

}
.

A control ξ is admissible if ξ ∈ AF(t , x) with

AF(t , x) :=

{
ξ ∈ L2

F([t ,T ]× Ω),

∫ T

t
ξs ds = x

}
.

For a given µ ∈ L2
F0 ([0,T ]× Ω;R), value function

V (t , x ;µ) := inf
ξ∈AF(t,x)

E

[∫ T

t

(
κsµsXs + ηsξ

2
s + λsX 2

s
)

ds
∣∣∣∣Ft

]
.
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Probabilistic approach

Stochastic maximum principle: characterization in terms of the FBSDE

Xs =x −
∫ s

t
ξu du (forward dynamics),

Ys =Yτ +

∫ τ

s
(κuµu + 2λuXu) du −

∫ τ

s
Zu dW̃u,

(backward dynamics),

XT =0 (terminal constraint).

with t ≤ s ≤ τ < T and W̃ = (W 0,W ) a Brownian motion.

Remark:
YT cannot be determined a priori. It is implicitly encoded in the FBSDE.
No a priori sign assumption −→ penalization method fails.
The first equation holds on [0,T ], the second equation holds on [0,T ).
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Conditional mean-field type FBSDE.

Standard approach yields the candidate optimal control

ξ∗s =
Ys

2ηs
.

MFG −→ conditional mean-field type FBSDE

dXs =− Ys

2ηs
ds,

−dYs =

(
κsE

[
Ys

2ηs

∣∣∣∣F0
s

]
+ 2λsXs

)
ds − Zs dW̃s,

Xt =x
XT =0.

(1)
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Partial decoupling field.

Ansatz: Y = AX + B where A solves a singular BSDE−dAs =

(
2λs −

A2
s

2ηs

)
ds − Z A

s dW̃s,

AT =∞.
(2)

and (X ,B) satisfies the FBSDE

dXs =− 1
2ηt

(AsXs + Bs) ds,

−dBs =

(
κsE

[
1

2ηs
(AsXs + Bs)

∣∣∣∣F0
s

]
− AsBs

2ηs

)
ds − Z B

s dW̃s,

X0 =x
BT =0.

(3)
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Spaces of weighted stochastic processes.
For ν ∈ R,

Hν := {Y : (T − .)−νY· ∈ S2
F([0,T ]× Ω;R ∪ {∞})}

is endowed with the norm

‖Y‖2
Hν

:= ‖Y‖2
ν := E

[
sup

0≤s≤T

∣∣∣∣ Ys

(T − s)ν

∣∣∣∣2
]
.

I If K ∈ Hν , with ν > 0, then KT = 0 a.s.

Mν := {Y : (T − .)−νY· ∈ L∞F ([0,T ]× Ω;R)}
is endowed with the norm

‖Y‖Mν := esssup
(s,ω)∈[0,T ]×Ω

|Ys|
(T − s)ν

.

Facts:
I If K1 ∈M−1 and K2 ∈ Hν , then K1K2 ∈ H−1+ν .
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Setting on the cost coefficients.

Assumption: κ, λ, 1
λ , η and 1

η belong to L∞F ([0,T ]× Ω; [0,∞)).

Notations:
‖λ‖, ‖κ‖, ‖η‖ the bounds of the respective cost coefficients.
λ? and η? the lower bounds of λ and η respectively.

α :=
η?
‖η‖
∈ (0,1].

Technical condition:
16η?λ? > ‖κ‖2.
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The singular process A.

From AJK-2014 and GHS-2017

Lemma
In L2

F(Ω; C[0,T−])× L2
F([0,T−];Rm) there exists a unique solution to (2)−dAt =

(
2λt −

A2
t

2ηt

)
dt − Z A

t dW̃t ,

AT =∞.

Moreover

0 ≤ 1

E
[∫ T

t
1

2ηs
ds
∣∣∣Ft

] ≤ At ≤
1

(T − t)2E

[∫ T

t
2ηs + 2(T − s)2λs ds

∣∣∣∣∣Ft

]
.
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The singular process A.

From AJK-2014 and GHS-2017

Lemma
In L2

F(Ω; C[0,T−])× L2
F([0,T−];Rm) there exists a unique solution to (2)−dAt =

(
2λt −

A2
t

2ηt

)
dt − Z A

t dW̃t ,

AT =∞.

Consequences:
A ∈M−1.
For any 0 ≤ r ≤ s < T , with α = η?/‖η‖

exp

(
−
∫ s

r

Au

2ηu
du
)
≤
(

T − s
T − r

)α
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First result.

Let 0 < γ < (1/2) ∧ α.

Theorem
There exists a unique solution (X ,B,Y ,Z B,Z Y ) to the FBSDEs (1) and
(3) s.t.

X ∈ Hα, B ∈ Hγ ;
Y ∈ L2

F([0,T ]× Ω;R) ∩ S2
F([0,T−]× Ω;R);

(Z B,Z Y ) ∈ L2
F([0,T ]× Ω;Rm)× L2

F([0,T−]× Ω;Rm) .
There exists a constant C > 0 depending on η, λ, κ, T and x , s.t.

‖X‖α + ‖B‖γ + E

[∫ T

0
|Yt |2 dt

]
≤ C.

Proof based on continuation method.
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Optimal liquidation strategy & equilibrium for the MFG.
Candidates for the optimal portfolio process and the optimal trading strategy:

X ∗t = xe−
∫ t

0
Ar

2ηr
dr −

∫ t

0

Bs

2ηs
e−

∫ t
s

Ar
2ηr

dr ds,

ξ∗t = xe−
∫ t

0
Ar

2ηr
dr At

2ηt
+

Bt

2ηt
− At

2ηt

∫ t

0

Bs

2ηs
e−

∫ t
s

Ar
2ηr

dr ds.

Theorem

The process ξ∗ is an optimal control. Hence µ∗ = E[ξ∗|F0] is the solution to
the MFG. Moreover, the value function is given by

V (t , x ;µ∗) =
1
2

Atx2 +
1
2

Btx +
1
2
E

[∫ T

t
κsX ∗s ξ

∗
s ds

∣∣∣∣Ft

]
.

Remark:

lim
t↑T

V (t , x ;µ∗) =

{
0, x = 0;
∞, x 6= 0.
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Stronger assumption.

The market depth and the risk aversion parameter depend only on the
common noise.

I ηi , λi ∈ L∞F0 ([0,T ]× Ω; [0,∞)).

The processes κi satisfy

κi ∈ L∞Fi ([0,T ]× Ω; [0,∞)), i = 1, . . . ,N

and they admit a common upper bound ‖κ‖
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From the previous part.

Benchmark cost functionals

J i (ξ;µ) := E

[∫ T

0
κi

tµtX i
t + ηi

t (ξ
i
t )

2 + λi
t (X

i
t )2 dt

]
.

Optimality
J i (ξ;µ∗,i ) ≥ J i (ξ∗,i ;µ∗,i ),

for any ξ ∈ L2
Fi ([0,T ]× Ω;R), where

ξ∗,i =
AiX ∗,i + B∗,i

2ηi ∈ L2
Fi ([0,T ]× Ω;R)

µ∗,it = E
[
ξ∗,it

∣∣∣F0
t

]
, t ∈ [0,T )

and (X ∗,i ,B∗,i ,Ai ) are the solutions to the system (2) and (3), with κ, η, λ and
W replaced by κi , ηi , λi and W i , respectively.
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MFG equilibrium.
Define

κ̃t = E[κi
t |F0

t ] = E[κj
t |F

0
t ].

and 

−dAt =

(
2λt −

A2
t

2ηt

)
dt − Z A

t dW 0
t ,

dX̃t = − At X̃t + B̃t

2ηt
dt

−dB̃t =

(
κ̃tAt

2ηt
X̃t +

κ̃t

2ηt
B̃t −

At B̃t

2ηt

)
dt − ζt dW 0

t ,

AT =∞, X̃0 = x , B̃T = 0.

Proposition
It holds for each i = 1, ...,N that a.s. a.e.

µ∗,it = µ∗t =
At X̃t

2ηt
+

B̃t

2ηt
.
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ε-Nash equilibrium.

Theorem
Assume that the admissible control space for each player i = 1, ...,N is given
by

Ai :=

{
ξ ∈ AFi (0, x) : E

[∫ T

0
|ξt |2 dt

]
≤ M

}
for some fixed positive constant M large enough. Then it holds for each
1 ≤ i ≤ N and each ξi ∈ Ai that

JN,i
(
~ξ∗
)
≤ JN,i (ξ∗,−i , ξi ) + O

(
1√
N

)
,

where (ξ∗,−i , ξi ) = (ξ∗,1, · · · , ξ∗,i−1, ξi , ξ∗,i+1, · · · , ξ∗,N).
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Unconstrained MFGs.

For a given integer n
1 Fix a process µ;
2 Solve the standard optimization problem: minimize

Jn(ξ;µ) = E

[∫ T

0

(
κtµtXt + ηtξ

2
t + λtX 2

t
)

dt + nX 2
T

]

such that
dXt = −ξt dt X0 = x ;

3 Solve the fixed point equation :

µ∗t = E[ξ∗t |F0
t ] a.e. t ∈ [0,T ],

where ξ∗ is the optimal strategy from step 2.
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Assumptions.

There exists a constant C such that for any 0 ≤ r ≤ s < T

exp

(
−
∫ s

r

Au

2ηu
du
)
≤ C

(
T − s
T − r

)
(With the former notation, α = 1).

Lemma
The previous assumption holds under each of the following conditions:

η is deterministic ;
1/η is a positive martingale ;
1/η has uncorrelated multiplicative increments, namely for any 0 ≤ s ≤ t

E
[
ηs

ηt

∣∣∣∣Fs

]
= E

[
ηs

ηt

]
.
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Related conditional mean field FBSDE.


dX n
t =

(
−An

t X n
t + Bn

t

2ηt

)
dt ,

−dBn
t =

(
−An

t Bn
t

2ηt
+ κtE

[
An

t X n
t + Bn

t

2ηt

∣∣∣∣F0
t

])
dt − Z Bn

t dW̃t ,

dY n
t =

(
−2λtX n

t − κtE
[

An
t X n

t + Bn
t

2ηt

∣∣∣∣F0
t

])
dt + Z Y n

t dW̃t ,

X n
0 = x ,

Bn
T = 0,

Y n
T = 2nX n

T ,

(4)

where

− dAn
t =

{
2λt −

(An
t )2

2ηt

}
dt − Z An

t dW̃t , An
T = 2n. (5)

Theorem
There exists a unique solution (X n,Bn,Y n,Z Bn

,Z Y n
) in

Hn
α ×Hn

γ × S2
F([0,T ]× Ω;R)× L2

F([0,T ]× Ω;Rm)× L2
F([0,T ]× Ω;Rm).
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Approximation

Lemma

There exists a constant C > 0 such that

‖X n‖n,α + ‖Bn‖n,γ + E

[∫ T

0
|Y n

t |2 dt

]
≤ C,

for any n.

Lemma

If α = 1, then

lim
n→+∞

{
E

[∫ T

0
|X n

t − X ∗t |2 dt

]
+ E

[∫ T

0
|Bn

t − B∗t |2 dt

]

+E

[∫ T

0
|Y n

t − Y ∗t |2 dt

]}
= 0.
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Approximation

Lemma

If α = 1, then

lim
n→+∞

{
E

[∫ T

0
|X n

t − X ∗t |2 dt

]
+ E

[∫ T

0
|Bn

t − B∗t |2 dt

]

+E

[∫ T

0
|Y n

t − Y ∗t |2 dt

]}
= 0.

Theorem
The value function V n(x) converges to V (x).
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Thank you for your attention !
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Benchmark case.

All the randomness is generated by the Brownian motion W 0 that drives
the benchmark price process.
All players share the same information.

Assumption: κ, λ, η and 1/η belong to L∞F0 ([0,T ]× Ω; [0,∞)).

I Consistency condition : µ = ξ∗.
I Conditional mean-field FBSDE:



dXt = − Yt

2ηt
dt ,

−dYt =

(
κtYt

2ηt
+ 2λtXt

)
dt − Zt dW 0

t ,

X0 = x ,
XT = 0.



Benchmark case.
Linear ansatz Y = AX :

− dAt =

(
2λt +

κtAt

2ηt
− A2

t

2ηt

)
dt − Z A

t dW 0
t , AT =∞.

Lemma

This equation has a unique solution. Moreover the processes A,
X ∗t = xe−

∫ t
0

Ar
2ηr

dr , Y = AX ∗ and ξ∗ = µ = Y
2η are all non negative and

A ∈M−1, X ∗ ∈Mα, Y ∈Mα−1, ξ
∗ ∈Mα−1.

Theorem
ξ∗(= µ∗) is an admissible optimal control as well as the equilibrium to MFG.
Moreover the value function is given by:

V (t , x ;µ∗) =
1
2

Atx2 +
1
2
E

[∫ T

t
κsµ

∗
sX ∗s ds

∣∣∣∣∣F0
t

]
.



Deterministic benchmark example.

T = 1, x = 1, λ = 5 and η = 5.

Figure: Trading rate ξ∗ Figure: Position X∗

Almgren-Chriss model: κ = 0 = no interaction.
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